Abstract:The evolution, structure and antigenic epitopes prediction of Rana dybowskii antimicrobial peptide dybowskin-1ST were carried out using bioinformatics software available online. Its antibacterial mechanism and structural properties were analyzed, and its activity was verified by applying wound healing assay in mice and bacteriostatic assay in vitro. This provides the theoretical basis for the improvement of parental peptide and the development of novel derivative peptides. The software MEGA_X were used to conduct homology alignment and to construct a phylogenetic tree. The online software ProtParam, ProtScale, PeptideCutter, signal, TMHMM Server were respectively used to predict the physicochemical parameters, hydrophilia/hydrophobicity, shear sites, signal peptides, and transmembrane domains of dybowskin-1ST. The online software SOPMA, Jpred4, DNAstar Protean were used to predict the secondary structure of dybowskin-1ST, and SWISS-MODEL, I-TASSER were used to predict the tertiary structure. ABCpred and SYFPEITHI were respectively used to predict its B-and T-cell epitopes. The effect of dybowskin-1ST on the wound healing was observed on experimental mice. Kirby-Bauer method and dilution method were used to determine the bacteriostatic activity of dybowskin-1ST. The dybowskin-1ST consists of 59 amino acid residues, of which leucine accounts for 16.9%, with a molecular formula of C318H510N80O93S2. Its theoretical isoelectric point is 5.10 and the charge is -2. The dybowskin-1ST and dybowskin-1CDYa are closely related phylogenetically. The secondary structure of dybowskin-1ST predicted by the three methods were similar, which consisted of α-helix (44.07%), extended strand (16.95%), β-turns (3.39%), and random coil (35.39%). The prediction of tertiary structure showed that dybowskin-1ST was mainly composed of α-helix, and it was regarded as a hydrophilic protein with signal peptide sequence. Subcellular localization analysis showed that the probability of secreting the mitochondrial targeted peptides was 0.944. Dybowskin-1ST is an extracellular protein with no transmembrane structure region, but contains seven phosphorylation sites, three T-cell epitopes and eight B-cell epitopes. The dybowskin-1ST promoted wound healing and effectively inhibited the growth of Escherichia coli and Staphylococcus aureus. However, it had limited antibacterial activity against fungi and drug-resistant bacteria. Although the structure of dybowskin-1ST is rich in α-helix, the verification experiments showed that its antibacterial ability needs to be enhanced. The reason may be that it is a negatively charged and hydrophilic protein, and amino acid modification with the aim of increasing the number of positive charges and changing the hydrophobicity may be used to obtain derived peptides with enhanced activity.