Abstract:Perillyl alcohol, [4-isopropylene-1-cyclohexene] methanol, is a monocyclic monoterpene alcohol with special odorous similar to that of linalool and terpineol. It has application potential in pharmaceutical, daily chemical and food industries. In this study, one method for the synthesis of perillyl alcohol through the MVA pathway was studied. First, the MVA metabolic pathway originated from Enterococcus faecalis was constructed in Escherichia coli to synthesize limonene. Limonene was further transformed to perillyl alcohol by the hydroxylation of cytochrome P450 alkane hydroxylase. Furthermore, the shake flask fermentation condition of the engineered E. coli strain was optimized. The results showed that the engineered E. coli could produce about 50.12 mg/L perillyl alcohol through MVA pathway using glucose as raw material. In this study, the method of the MVA pathway for perillyl alcohol synthesis was constructed successfully in engineered E. coli, which provides both theoretical and technical support for terpenoids biosynthesis.