Abstract:In producing recombinant β-glucosidase in Escherichia coli by high-cell density cultivation (HCDC), insufficient soluble oxygen is always a problem. To address it, Vitreoscilla hemoglobin (VHb) was introduced into Escherichia coli by the bicistron and T7 promoter expression systems, to improve soluble oxygen by bacterial cells and thereby to enhance the biomass and recombinant β-glucosidase production. In the case of bicistron expression system, cell density in shaking flask reached OD600=(4.24±0.29), 35.03% higher than that of the control without VHb. Correspondingly, the maximum activity of β-glucosidase co-expressed with VHb was (9.78±0.55) U/mL, 25.38% higher than that of the control. In a 3-L fermentor, the maximum activity of β-glucosidase was 141.23 U/mL, 35.57% higher than that of the control. In contrast, the activity of β-glucosidase co-expressed with VHb under T7 promoter was lower than that of the control, either in flask or in fermentor. Co-expressing β-glucosidase with VHb using the bicistron expression system may improve the tolerance of E. coli to insufficient soluble oxygen and thus promote the bacterial biomass and the enzyme yield.