Abstract:Kluyveromyces marxianus, as unconventional yeast, attracts more and more attention in the biofuel fermentation. Although this sort of yeasts can ferment pentose sugars, the fermentation capacity differs largely. Xylose and arabinose fermentation by three K. marxianus strains (K. m 9009, K. m 1911 and K. m 1727) were compared at different temperatures. The results showed that the fermentation performance of the three strains had significant difference under different fermentation temperatures. Especially, the sugar consumption rate and alcohol yield of K. m 9009 and K. m 1727 at 40 ℃ were better than 30 ℃. This results fully reflect the fermentation advantages of K. marxianus yeast under high-temperature. On this basis, five genes (XR, XDH, XK, AR and LAD) coding key metabolic enzymes in three different yeasts were amplified by PCR, and the sequence were compared by Clustalx 2.1. The results showed that the amino acid sequences coding key enzymes have similarity of over 98% with the reference sequences reported in the literature. Furthermore, the difference of amino acid was not at the key site of its enzyme, so the differences between three stains were not caused by the gene level, but by transcribed or translation regulation level. By real-time PCR experiment, we determined the gene expression levels of four key enzymes (XR, XDH, XK and ADH) in the xylose metabolism pathway of K. m 1727 and K. m 1911 at different fermentation time points. The results showed that, for thermotolerant yeast K. m 1727, the low expression level of XDH and XK genes was the main factors leading to accumulation of xylitol. In addition, according to the pathway of Zygosaccharomyces bailii, which have been reported in NCBI and KEGG, the xylose and arabinose metabolic pathways of K. marxianus were identified, which laid foundation for further improving the pentose fermentation ability by metabolic engineering.