Abstract:Epidermal growth factor (EGF) is an epithelial cell growth factor that can stimulate intestinal development, repair the damage of epidermal cells as well as reduce the incidence of pathogen infection and diarrhea. In order to produce a recombinant Lactobacillus plantarum (L. plantarum) expressing porcine epidermal growth factor (pEGF), we constructed a recombinant vector stably expressing pEGF in L. plantarum strains. First, L. plantarum strain Lp-1 was isolated from intestinal contents of piglets. Then the functional domain of pEGF, M6 precursor protein signal peptide (SP) and super strong constitutive promoter (SCP) were connected with the backbone plasmid pIAβ8 to construct the recombinant vector that was transformed into Lp-1 by electroporation. Afterwards, pEGF was expressed in Lp-1 and detected by Tricine-SDS-PAGE and ELISA. After orally irrigated early-weaned BALB/c mice with the recombinant L. plantarum every morning and late afternoon for 10 consecutive days, body weight, villous height and crypt depth in the intestine were measured to examine the influence of the recombinant bacteria on the intestinal development of early-weaned mice in vivo. Finally, the results of our experiments demonstrated that pEGF was successfully expressed in Lp-1 and the molecular weight of pEGF was 6 kDa. In addition, the recombinant pEGF can enhanced the daily gain and exerted significance influence (P<0.05) to the small intestinal morphology of early-weaned BALB/c mice. In conclusion, pEGF could be expressed in L. plantarum and the recombinant pEGF possesses good biological activity.