Abstract:Since Yamanaka successfully reprogrammed murine fibroblasts into iPSCs in 2006, iPSCs technology has drawn much attention worldwide. Although iPSCs provides tremendous possibilities for both basic research and regenerative medicine, it has meanwhile potential risks, e.g. tumorigenicity. Scientists, therefore, have made efforts in clarifying the mechanism of the cause for iPSCs tumorigenicity and the way how to reduce the risk. The results of some researches reveal some of tumorigenic factors, e.g. the partial similarity of gene expression profiles between cancer cells and iPSCs, the accumulation of the genetic damages in the course of reprogramming process, and mutation in the cellular culture. As a consequence, numerous methods for reducing iPSCs tumorigenicity have been explored, such as minimized use of the reprogramming factors at the controlled manner, and the selection of the expression vector or parental cells. In this paper, the cause of iPSCs tumorigenicity and the current achievements on preventing iPSCs tumorigenesis are reviewed.