微生物学通报 Microbiology China tongbao@im.ac.cn

主编点评文章

草酸青霉对含钾矿物风化及钾溶出的影响

宋淼 彭云湘 Pedruzzi Israel 李平 于建国*

(华东理工大学 化学工程联合国家重点实验室 上海 200237)

摘 要:【目的】探讨含钾硅酸盐矿物在草酸青霉(Penicillium oxalicum)作用下的风化及钾溶出 情况。【方法】利用等离子体发射光谱、X-射线能谱、X-射线光电子能谱分析了 3 种常见含钾 硅酸盐矿物(钾长石、白云母和黑云母)在草酸青霉作用后浸出液和矿物表面元素含量的变化; 通过 X-射线衍射分析矿物晶相结构的变化;采用共聚焦激光扫描显微镜表征了草酸青霉在矿物 表面形成的生物膜;测量了培养液中不同碳源与氮源组分对草酸青霉解钾的影响。【结果】草 酸青霉对结构稳定的钾长石和白云母风化速率较低,相比而言黑云母容易被风化并释放可溶性 钾元素;草酸青霉在矿物表面形成了网状结构的生物膜,有利于微环境的生成及有机酸在其内 的富集,促进微环境内钾的释放,强化微生物对矿物的风化作用;草酸青霉对多种碳源及氮源 都表现出较好的适用性。【结论】草酸青霉是一种能够促进多种含钾矿物风化和钾溶出的真菌, 在堆肥和生物肥料领域具有广泛的应用前景。

关键词:草酸青霉,含钾矿物,钾溶出,生物风化

Bioweathering and K release of K-bearing minerals by *Penicillium oxalicum*

SONG Miao PENG Yun-Xiang Pedruzzi Israel LI Ping YU Jian-Guo*

(State Key Laboratory of Chemical Engineering, College of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China)

Abstract: [Objective] To study the effect of K release and weathering of K-bearing minerals by *Penicillium oxalicum*. **[Methods]** The element compositions in the liquid phase and on the mineral surface were determined by Inductively Coupled Plasma, X-ray Energy Dispersive Spectrometer and X-ray Photoelectron Spectroscopy. The crystal structure was analyzed by X-ray diffraction after the mineral was incubated with *P. oxalicum*. The biofilm formed onto K-bearing minerals was determined by Confocal Laser Scanning Microscope. The effect of carbon source and nitrogen source on K mobilization by *P. oxalicum* was also studied. **[Results]** Biotite showed less resistance to fungal bioweathering, compared with K-feldspar and muscovite, and *P. oxalicum* formed network structure biofilm where probably the organic acid was concentrated. Different carbon and nitrogen source could be used by *P. oxalicum*. **[Conclusion]** *P. oxalicum* can accelerate the bioweathering and K release of different K-bearing minerals and has application potential in compost and biofertilizer.

基金项目: 国家自然科学基金项目(No. 21376085); 中国博士后科学基金项目(No. 2012M510809)

^{*}通讯作者: Tel: 86-21-64250981; 回: jgyu@ecust.edu.cn

收稿日期: 2014-11-24; 接受日期: 2015-01-15; 优先数字出版日期(www.cnki.net): 2015-03-12

Keywords: Penicillium oxalicum, K-bearing minerals, K release, Bioweathering

钾是作物生长必需的3种大量元素之一,在农 业生产中的意义显著。而我国可溶性钾资源十分匮 乏,每年约50%的钾肥依赖进口。由于微生物在矿 物风化、土壤形成以及元素地球化学循环中扮演重 要角色^[1],众多的学者已对芽孢杆菌属^[2-8]、类芽孢 杆菌属^[9]细菌,曲霉属^[10-14]、蛛网菌属^[15]、外生菌 根^[16-20]真菌等微生物从矿物中释放钾元素的特性 进行了研究。目前,有机酸等络合基团、胞外多糖、 微生物与矿物的直接接触及进一步行成的生物膜 (微环境)被认为是微生物促进钾溶出的主要原因。

另一方面, 矿物本身的性质也对微生物钾溶出 有重要的影响。Sheng等^[21]发现不同矿物结构会导 致微生物钾溶出速率的差别; 也有研究显示胶质芽 孢杆菌能够风化云母, 而对长石的钾溶出作用有 限^[4]。自然环境中微生物会选择性地优先风化某些 矿物,这是以矿物中含有其生长代谢所需矿质元素 为驱动力的^[22]。孙德四等^[11]的研究表明在微生物风 化矿物的过程中, 矿物晶体结构的逐渐破坏常常伴 随着新相(次生矿物)的形成, 部分次生矿物是由溶 出的矿物元素与微生物代谢物络合产生的沉淀。此 外, Xiao等^[23]发现相比无矿物存在时, 烟曲霉在含 钾矿物存在下会调控自身代谢, 产生更多的碳酸酐 酶及更多可配合金属的蛋白以加速矿物的风化。

青霉属真菌在环境中分布广泛,是土壤微生物 的重要组成部分。草酸青霉能够溶解含磷矿物、促 进作物生长^[24],还在非硫化矿物的生物浸出中扮演 着重要的角色^[25]。前期工作^[26]对购买的4种青霉属 真菌(草酸青霉、赭绿青霉、小刺青霉、简青霉)浸 取黑云母矿的解钾性能进行了初步研究,发现其中 草酸青霉的解钾性能最优,草酸青霉在促进矿物风 化和钾释放中能够产生草酸。基于前期的研究结 果,本文进一步研究了3种常见含钾矿物(钾长石、 白云母和黑云母)在草酸青霉作用下的风化及钾溶 出情况,考察了矿物颗粒大小、固液比、碳源、氮 源等培养液组分对草酸青霉钾溶出的影响,分析了 矿物晶体结构变化及菌丝与硅酸盐矿物的相互作 用,为研究含钾硅酸盐矿物的风化与释钾提供新的 思路。

1 材料与方法

1.1 材料

1.1.1 菌种:草酸青霉(CGMCC 3.2918)购自中国 普通微生物菌种保藏管理中心。

1.1.2 培养基:实验采用察氏琼脂培养基对草酸 青霉进行斜面培养,液相培养基是通过察氏培养基 变化而来的^[12]:将察氏培养基中磷源由 K₂HPO₄换 为 Na₂HPO₄,并去掉 KCl 组分,以分析菌种在无可 溶性钾的情况下,对含钾矿物的风化。

1.1.3 含钾硅酸盐矿物:实验中用到的含钾硅酸盐矿物分别为钾长石(微斜长石)、白云母和黑云母,均采自河北灵寿县。利用 X 射线荧光光谱仪(XRF, ARL ADVANT' X INTELLIPOWER, Thermo Scientific)对 3 种矿物的元素含量进行了分析,如表 1 所示。经破碎后,选取颗粒为 200-400 目的 3 种矿物为主要的实验对象,同时也收集<200 目和>400 目的钾长石以研究矿物粒径的影响。经 XRD 分析表明,3 种矿物均含有部分石英晶体,此外,供试 黑云母还含有部分多水高岭土。

表 1 不同矿物的化学组成 Table 1 Chemical composition of different minerals							
矿物 Mineral	K ₂ O	Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	MgO	其他 Other	
K-feldspar	10.79	21.51	63.71	0.39	0.19	3.41	
Muscovite	8.60	34.45	49.48	4.63	1.24	1.60	
Biotite	5.57	15.95	48.33	10.48	8.77	10.30	

1.2 方法

1.2.1 含钾硅酸盐矿物的微生物浸取实验:于 250 mL 三角烧瓶中加入 100 mL 液相培养基,并分 别称取5g200-400目的钾长石、白云母、黑云母 置于烧瓶中。烧瓶封口 1×10⁵ Pa 灭菌 15 min 后, 在无菌操作箱中接入1mL浓度为10⁶孢子/mL的孢 子菌悬液,菌悬液是利用无菌水冲洗草酸青霉试管 斜面获得的,以不接种为对照实验。将接种后与对 照实验的烧瓶置于 30 °C、180 r/min 培养 15 d。培 养结束后,离心(8000 r/min, 15 min)分离获得的滤 液稀释后待测,测量结果为浸出液中可溶性元素含 量。将离心所得固相(矿物与真菌菌丝)放回三角烧 瓶中, 加入 100 mL 1 mol/L NH₄Ac 后超声 15 min, 再置于 30 °C 摇床(180 r/min)中振荡培养 30 min。 二次离心(8 000 r/min, 15 min)分离,所得浸出液稀 释后待测,测量结果为菌丝吸附(可交换)的元素含 量,分离所得固体置于 80 °C 烘箱中,恒重后测量 总干重(菌丝体和矿物),作为反映生物量的一个指 标。浸出液中元素(K、Al、Si、Mg、Fe、Ca等)含 量采用电感耦合等离子发射光谱(ICP-OES, AMETEX, SPECTRO ARCOS)进行测量。所有实验 设3个平行样,取平均值作为实验结果。

1.2.2 不同粒径和固液比的矿物微生物浸取实验:选用<200目、200-400目和>400目3个矿物粒径区段的钾长石与草酸青霉在液相培养基中振荡培养(30°C、180 r/min)15 d。选取 200-400 目钾长石,分别称取 1、3、5、7和9g置于烧瓶中,与草酸青霉在 100 mL 液相培养基中振荡培养(30°C、180 r/min)15 d。所有实验设 3个平行样,取平均值作为实验结果。

1.2.3 不同碳源或氮源培养液的微生物浸矿实验:将液相培养基中的碳源(蔗糖)分别替换为葡萄糖、麦芽糖、D-木糖、D-半乳糖、D-甘露糖、D-果糖、可溶性淀粉等碳源,以研究不同碳源对草酸青霉解钾的影响。将液相培养基中的氮源[(NH4)2SO4]分别替换为硝酸钠、酵母提取物和蛋白胨,以研究不同氮源对草酸青霉解钾的影响。所有

实验设3个平行样,取平均值作为实验结果。

1.2.4 矿物及生物膜的表征:采用 X 射线衍射仪 (XRD, Rigaku, D/Max 2550 VB/PC)分析矿物在微 生物作用前后的晶相结构。广角扫描所用参数: Cu Ka 靶(λ=1.540 56 Å), 扫描电压为 40 kV, 电流 100 mA, 扫描速度为 10°/min, 步长为 0.02°, 扫描 范围为 10°-80°。小角度扫描所用参数: 扫描电压 与电流同上,扫描速度为 0.4°/min, 步长为 0.02°, 扫描范围为 0.7°-10°。利用扫描电子显微镜(SEM, FEI, Quanta 250)表征矿物的表面形貌, 样品直接 铺撒在导电胶上,并进行喷金预处理。样品的表面 化学组成由 X 射线能谱(EDS, EDAX, Falcon)分析。 此外,还利用 X-射线光电子能谱(XPS, Thermo Scientific, ESCALAB 250Xi)对矿物表面浅层进行 表 面 化 学 组 成 的 分 析 。 生 物 膜 的 观 察 采 用 1 cm×1 cm 的白云母片作为基底,将云母片放入液 相培养基中与草酸青霉培养5d后,将白云母片按 照 Villena 等^[27]的方法进行前处理,并利用共聚焦 激光扫描显微镜(CLSM, Nikon, A1R)进行观察。

2 结果与分析

2.1 含钾硅酸盐矿物的晶相结构对草酸青霉释 钾的影响

图1显示了不同含钾矿物底物与草酸青霉培养 15 d 后的钾溶出情况。对于钾长石、白云母和黑云 母3种矿物,草酸青霉作用后溶液的最终 pH 分别 为2.25、2.08和5.58。虽然相比钾长石和白云母, 黑云母溶液中最终的 pH 较高,但仍显现出了更高 的释钾量,这与不同含钾矿物的晶体稳定性有直接 的关系。对于钾长石,钾位于铝硅四面体网状结构 的间隙,表层的钾离子在与液相接触后,会通过离 子交换快速地进入溶液相中,而深层的钾离子主要 通过扩散进入溶液中,能垒较高,因此钾溶出量较 低。而白云母和黑云母均是层状结构的矿物,钾离 子位于片层结构的层间,主要通过离子交换进入溶 液中。但对于二八面体结构的白云母,片层与层间 钾离子的作用力强于三八面体结构的黑云母中的

图 1 草酸青霉与不同含钾矿物底物培养 15 d 后钾溶 出量

Figure 1 K release amount from three K-bearing minerals after 15-day incubation with *P. oxalicum*

作用力,且白云母的晶体结构稳定性优于黑云母, 因此黑云母抗真菌风化的能力弱于白云母和钾长 石。连宾等也发现微生物对伊利石的解钾作用效果 明显强于对钾长石的解钾作用^[6,28]。此外,在微生物 存在的条件下,代谢产物有机酸的螯合作用和微生 物的主动吸收也会促进矿物中钾的释放^[10,16,29]。

2.2 含钾硅酸盐矿物的粒径和固液比对钾溶出的影响

表 2 的结果显示, 钾长石粒径大小对钾溶出具 有很大的影响。随着矿物粒径的减小, 草酸青霉作 用下钾溶出量呈上升的趋势。草酸青霉与矿物的接 触可以促进矿物溶解, 之前的研究表明, 当草酸青 霉与矿物直接接触时, 矿物溶解速率快于将矿物隔离 在透析袋内的溶解速率^[26], 而粒径的降低会增加矿物 的表面积, 有利于与草酸青霉及溶液相的接触。

表 2 不同钾长石粒径对钾释放量的影响 Table 2 Effect of particle size on K release from K-feldspar					
粒径大小 Particle size (mesh)	K (mg/L)	pH			
<200	47.75±2.23	2.05±0.04			
200-400	76.15±1.86	2.25±0.01			
>400	93.13±0.31	2.67±0.02			

此外,固液比也影响着草酸青霉作用下的钾溶 出。菌丝与矿物之间的包裹、剪切等作用促进了矿 物的风化和矿质元素溶出,同时由于真菌对矿物风 化作用属于表面反应,在菌丝体数目足够多的情况 下,增加矿物的量会为菌丝提供更多风化作用的基 体。在固液比为 10-90 g/L 的范围内,钾长石颗粒 均能够被草酸青霉菌丝充分地包裹以形成菌丝-矿 物聚集体,在三角烧瓶底部基本没有分散的矿物颗 粒。从图 2 可以看出,在图示范围内,钾溶出量与 固液比基本呈线性关系(r²=0.986)。结合表 2 及图 2 可以看出,随着钾溶出量的增加,溶液的最终 pH 值呈上升趋势。这可能是由于钾长石在酸性条件下 溶解过程中,氢离子会作为反应物参与反应。钾长 石在酸性条件下的溶解反应可以简化成如下两个 公式^[10]:

2KAlSi₃O₈+2H⁺+9H₂O=Al₂Si₂O₅(OH)₄+4H₄SiO₄(aq) +2K⁺ (1) KAlSi₃O₈+H⁺+7H₂O=Al(OH)₃+3H₄SiO₄(aq)+K⁺ (2) **2.3** 培养液中不同碳源和氮源对草酸青霉解钾 的影响

表 3 列出了草酸青霉在不同碳源和氮源下, 钾 长石风化溶钾的情况。可以看出对于所有供试的单 糖及二糖, 草酸青霉均显现出较好的利用情况, 钾 的释放量均大于 65 mg/L, 这说明草酸青霉适用的 碳源较为广泛, 有利于其在自然环境中的代谢。其 中以蔗糖和半乳糖作为碳源时, 钾溶出量和总干重

图 2 钾长石固液比对草酸青霉钾溶出的影响 Figure 2 Effect of solid-liquid ratio of K-feldspar on K release by *P. oxalicum*

表 3 不同碳源和氮源对钾长石钾释放的影响 Table 3 Different C course and N source on K release from K folderer					
不同底物 Different substrate	K (mg/L)	总干重 Gross dry mass (g)	pH		
碳源 Carbon source					
Sucrose	76.15±1.86	5.50±0.03	2.25±0.01		
Maltose	66.90±2.30	5.39±0.01	2.34±0.07		
Glucose	66.24±0.99	5.40±0.02	2.28±0.01		
D-xylose	73.95±2.79	5.25±0.04	2.41±0.04		
D-galactose	76.53±2.30	5.60±0.01	2.16±0.05		
D-mannose	71.07±1.26	5.26±0.00	2.35±0.04		
D-fructose	70.80±0.87	5.22±0.01	2.32±0.03		
Soluble starch	45.68±1.45	5.21±0.03	2.18±0.03		
氮源 Nitrogen source					
NaNO ₃	60.17±1.53	5.27±0.01	5.31±0.05		
$(NH_4)_2SO_4$	76.15±1.86	5.50±0.03	2.25±0.01		
Yeast extract	70.36±2.76	5.17±0.02	5.10±0.05		
Peptone	50.02±0.65	5.18±0.01	5.48±0.01		

最高。因此, 生物量可能是影响草酸青霉释钾的一 个重要的因素:更高的总干重(生物量)则意味着生成 的真菌菌丝体越多,则菌丝体对矿物的包裹、剪切 作用越强、钾的溶出量越多。而当利用可溶性淀粉 作为碳源时,草酸青霉的释钾量和总干重都较低, 可能是由于草酸青霉缺少淀粉水解酶,只利用了淀 粉在酸性溶液环境中水解出的少量单糖的原因。在 供试的 4 种氮源中,以硫酸铵作为氮源时,溶液的 最终 pH 最低。这是由于部分细菌及真菌会通过离子 交换, 以 1:1 计量化学的形式吸收(NH₄)⁺同时排出 H⁺,导致微生物周围环境的酸化^[30]。在酸性条件下, 更低的 pH 有利于矿物的溶解及矿质元素的溶出;且 以(NH₄)₂SO₄作为氮源时,总干重最大,这也可能是 钾溶出量更高的原因。综上所述,草酸青霉可以利 用多种形式的碳源与氮源,这有助于草酸青霉在自 然环境中的富集并促进矿物钾的溶出。

2.4 草酸青霉与含钾矿物的相互作用

从图 3 可以看出,草酸青霉在白云母表面形成 了网状结构的生物膜。生物膜的形成使草酸青霉菌 丝体不再游离于液相中,而是粘附在矿物的表面, 这种粘附作用有利于在矿物表面形成微环境。微生 物的微环境内常常比液相主体有更低的 pH 和更 高的有机酸,这都可以强化微生物对矿物的风化作用^[31]。

通过比较溶液相中的元素含量比与矿物主体 的元素含量比可以看出(表 4),3种含钾矿物在草酸 青霉作用下均显现出非计量化学的溶解。且对于组 成矿物的3种主体元素(钾、铝、硅),钾最易溶出, 随后为铝,硅作为骨架中含量最高的元素,最难溶

图 3 白云母片上形成的草酸青霉生物膜的共聚焦激光 扫描显微镜图

Figure 3 CLSM observation of biofilm formed onto the muscovite flake

表 4 不同相下矿物的元素原子数比 Table 4 Atomic composition ratio in different phases							
不同相 Different phases	钾长石 Microcline		白云母 Muscovite		黑云母 Biotite		
	K/Si	Al/Si	K/Si	Al/Si	K/Si	Al/Si	
Mineral bulk composition ^a	0.216	0.398	0.222	0.821	0.147	0.398	
Composition in liquid phase ^b	0.755	1.103	0.405	1.021	1.038	0.083	
EDS results before experiment	0.253	0.344	0.256	0.732	0.156	0.371	
EDS results after experiment	0.205	0.334	0.108	0.351	0.128	0.299	
XPS results before experiment	0.301	0.225	ND	ND	0.147	0.554	
XPS results after experiment	0.206	0.194	ND	ND	0.098	0.283	

注: ^a: 数据由 XRF 分析结果计算得到; ^b: 数据由 ICP 分析结果计算得到; ND: 没有进行测试.

Note: ^a: Data is obtained by XRF results; ^b: Data was obtained by ICP results; ND: Non-determined.

出,这个现象与矿物在酸性条件下的非计量化学溶 解一致。由于不是组成硅酸盐骨架四面体或八面体 的元素,钾主要是通过离子交换和扩散进入溶液 相,而铝和硅的溶出则需要以四面体或八面体的解 体为前提,因此钾在矿物主体成分中最易溶出。 Morrow 等^[32]通过从头计算得出在 Al-O-Si 结构中, 铝氧键断裂能垒低于硅氧键断裂的能垒,这可能是 铝比硅更容易被溶出的原因。对于黑云母,溶液相 中铝含量较低,可能是由于溶液在 pH 值较高(5.58) 的条件下,铝的溶解度低,溶出的铝元素以二次沉 淀的形式存在。

不同矿物表面化学的分析结果也进一步证实 了草酸青霉作用下,3种矿物的非计量化学溶解: 两种表面元素含量分析方法均显示钾和铝相对硅 的含量在实验后呈下降的趋势。EDS 与 XPS 均可 以获得表面含量的信息,但由于机理的不同,EDS 获取的信息为表面几百纳米的元素含量,而 XPS 一 般为表面 10 纳米的元素含量信息。从表4可以看 出,XPS 在实验前后 K/Si和 Al/Si 的降低幅度与 EDS 相比更大,这可能是由于在草酸青霉的风化作用 下,矿物表面形成了富硅的浸出层,而浸出层的钾 和铝的缺失程度与距离矿物表面的距离有关:越靠 近矿物表面,钾铝的含量就越低。

图 4 和图 5 分别列出了白云母与黑云母在草酸 青霉作用前后的 XRD 图。可以看出,在 15 d 的生 物风化作用后,主要矿物组分的衍射峰变化较小, 部分白云母和黑云母的衍射峰仅仅是发生了宽化, 同时小角度的衍射图显示出白云母与黑云母的层 间距在实验后并没有明显的变化,说明矿物主体晶 体结构并没有遭到破坏。对于钾长石,草酸青霉作 用前后的 XRD 图也没有很大的变化(文中没有显 示),孙德四等^[11]也发现真菌对钾长石的风化作用较 弱。这说明在有限的时间内,真菌对矿物的风化溶 解作用较为微弱,主要体现在矿物近表面的风化溶 解,而对矿物主体的作用还十分有限。此外,对于 钾溶出量最高的黑云母,作用后的衍射图中出现了 新的衍射峰,可能对应着草酸青霉风化后形成的二 次沉淀或新相。

图 4 白云母原矿(A)及在草酸青霉作用后(B)的 XRD 图 Figure 4 XRD of original muscovite (A) and that after incubation with *P. oxalicum* (B)

图 5 黑云母原矿(A)及与草酸青霉作用后(B)的 XRD 图 Figure 5 XRD of original biotite (A) and that after incubation with *P. oxalicum* (B)

3 结论

草酸青霉可以利用多种形式的碳源和氮源进 行代谢活动,以促进含钾硅酸盐矿物的钾元素溶 出,钾溶出量与含钾硅酸盐矿物的晶体结构及稳定 性有直接的关系:三八面体层状结构的黑云母钾溶 出量大于二八面体的白云母与四面体网状结构的 钾长石。钾长石、白云母和黑云母在草酸青霉的作 用下均显现出非计量化学的溶解;在有限的时间 内,真菌对矿物的风化溶解作用较为微弱,主要体 现在矿物近表面的风化溶解,而对矿物主体的作用 还十分有限。研究表明更小的矿物颗粒尺寸、以及 更高的矿物浓度可以提高草酸青霉的钾溶出量。草 酸青霉在含钾硅酸盐矿物表面形成了网状结构的 生物膜,使草酸青霉菌丝体不再游离于液相中,而 是粘附在矿物的表面,形成微环境,在微环境内常 常比液相主体有更低的 pH 和更高的有机酸,强化 微生物对矿物的风化作用。因此,草酸青霉在堆肥 和生物肥料领域具有广泛的应用前景。

参 考 文 献

- Ullman WJ, Kirchman DL, Welch SA, et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature[J]. Chemical Geology, 1996, 132(1): 11-17
- [2] Sheng XF, He LY. Solubilization of potassium-bearing minerals by a wild-type strain of *Bacillus edaphicus* and its mutants and

increased potassium uptake by wheat[J]. Canadian Journal of Microbiology, 2006, 5(1): 66-72

- [3] Sheng XF, Feng Y. Dissolution of potassium-bearing minerals by silicate-dissolving bacteria under different conditions[J]. Soil, 2005, 37(5): 572-574 (in Chinese) 盛下放,冯阳. 不同条件下硅酸盐细菌对含钾矿物分解作用 的研究[J]. 土壤, 2005, 37(5): 572-574
- [4] Liu W, Xu X, Wu X, et al. Decomposition of silicate minerals by *Bacillus mucilaginosus* in liquid culture[J]. Environmental Geochemistry and Health, 2006, 28(1/2): 133-140
- [5] Singh G, Biswas DR, Marwaha TS. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (*Zea mays*) and wheat (*Triticum aestivum* L.): a hydroponics study under phytotron growth chamber[J]. Journal of Plant Nutrition, 2010, 33(8): 1236-1251
- [6] Lian B. A study of how silicate bacteria GY92 dissolves potassium from illite[J]. Acta Mineralogica Sinica, 1998, 18(2): 234-238 (in Chinese)
 连宾. 硅酸盐细菌 GY92对伊利石的释钾作用[J]. 矿物学报, 1998, 18(2): 234-238
- [7] Man LY, Cao XY, Sun DS. Effect of potassium-solubilizing bacteria-mineral contact mode on decomposition behavior of potassium-rich shale[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 1099-1109 (in Chinese)
 满李阳,曹晓燕,孙德四. 钾细菌-矿物接触模式对富钾页岩 分解行为的影响[J]. 中国有色金属学报, 2014, 24(4): 1099-1109
- [8] Huang Z, Ma GY, He LY, et al. Effect of ammonium sulfate on the metabolism and K-feldspar weathering of two potassium-bearing mineral-solubilizing bacteria[J]. Acta Microbiologica Sinica, 2012, 52(2): 206-213 (in Chinese) 黄智, 马光友,何琳燕,等. 硫酸铵对两株钾矿物分解细菌生 长代谢和风化钾长石的影响[J]. 微生物学报, 2012, 52(2): 206-213
- [9] Yu WQ, Liu WZ, Hu GM, et al. Paenibacillus terrae new strain NK3-4 and its functions[J]. Microbiology China, 2014, 41(4): 621-628 (in Chinese) 于文清,刘文志,胡广民,等. 土地类芽孢杆菌(Paenibacillus terrae)新菌株 NK3-4及其功能[J]. 微生物学通报, 2014, 41(4): 621-628
- [10] Lian B, Wang B, Pan M, et al. Microbial release of potassium from K-bearing minerals by thermophilic fungus *Aspergillus fumigatus*[J]. Geochimica et Cosmochimica Acta, 2008, 72(1): 87-98
- [11] Sun DS, Yin JM, Chen Y, et al. Effect of crystal structures of potassium-bearing minerals on *Aspergillus niger* growth metabolism and potassium and silicon release[J]. Scientia Agricultura Sinica, 2014, 47(3): 503-513 (in Chinese) 孙德四, 尹健美, 陈晔, 等. 钾矿物晶体结构对黑曲霉生长代 谢及钾与硅的溶出影响[J]. 中国农业科学, 2014, 47(3): 503-513
- [12] Hu J, Lian B, Yu JP, et al. Formation of Aspergillus niger-mineral aggregation and characterization of polysaccharide from aggregation[J]. Acta Microbiologica Sinica, 2011, 51(6): 756-765 (in Chinese) 胡婕, 连宾, 郁建平, 等. 黑曲霉-矿物聚集体的形成及其分

泌的多糖特性[J]. 微生物学报, 2011, 51(6): 756-765

- [13] Hu J, Yu JP, Lian B. Capability and mechanism of potassium releasing from potassium-bearing minerals by *Aspergillus niger*[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(3): 277-285 (in Chinese)
 胡婕, 郁建平, 连宾. 黑曲霉对含钾矿物的解钾作用与机理 分析[J]. 矿物岩石地球化学通报, 2011, 30(3): 277-285
- [14] Zhan SF, Fang YF, Gan JL, et al. Identification of one endophytic fungal strain and evaluation of its K release activity[J]. Jiangsu Agricultural Sciences, 2013, 41(10): 320-323 (in Chinese) 詹寿发, 樊有赋, 甘金莲, 等. 1株山药内生真菌的鉴定及解

钾活性[J]. 江苏农业科学, 2013, 41(10): 320-323[15] Ren YZ, Zhou HL. A potassium decompose strain in genus

- Arachina[J]. Microbiology China, 1998, 25(6): 311-313 (in Chinese)

 任玉忠,周慧玲. 蛛网菌属中分解钾的菌株[J]. 微生物学通报, 1998, 25(6): 311-313
- [16] Yuan L, Huang J, Li X, et al. Biological mobilization of potassium from clay minerals by ectomycorrhizal fungi and eucalypt seedling roots[J]. Plant and Soil, 2004, 262(1/2): 351-361
- [17] Yuan L, Wang Z, Fang D, et al. Bio-mobilization of potassium from clay minerals: II. By ectomycorrhizal fungi[J]. Pedosphere, 2000, 10(4): 347-354
- [18] Yuan L. Potassium absorption and biological mobilization from soil minerals by ectomycorrhizal fungi and ectomycorrhizas[D]. Beijing: Doctoral Dissertation of China Agriculture University, 2003 (in Chinese) 袁玲. 外生菌根吸收和活化利用土壤矿物钾的研究[D]. 北京: 中国农业大学博士学位论文, 2003
- [19] Zhang L, Wang MX, Zhang W, et al. Mobilization of potassium from soil by ectomycorrhizal fungi[J]. Acta Microbiologica Sinica, 2014, 54(7): 786-792 (in Chinese) 张亮, 王明霞, 张薇, 等. 外生菌根真菌对土壤钾的活化作用 [J]. 微生物学报, 2014, 54(7): 786-792
- [20] Hou WG, Lian B. Review of K extraction ectomycorrhizal fungi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27: 452-454 (in Chinese) 侯卫国,连宾.外生菌根真菌解钾作用研究进展[J]. 矿物岩 石地球化学通报, 2008, 27: 452-454
- [21] Sheng XF, Zhao F, He LY, et al. Isolation and characterization of silicate mineral-solubilizing *Bacillus globisporus* Q12 from the surfaces of weathered feldspar[J]. Canadian Journal of

Microbiology, 2008, 54(12): 1064-1068

- [22] Bennett PC, Hiebert FK, Choi WJ. Microbial colonization and weathering of silicates in a petroleum-contaminated groundwater[J]. Chemical Geology, 1996, 132(1): 45-53
- [23] Xiao B, Lian B, Sun L, et al. Gene transcription response to weathering of K-bearing minerals by *Aspergillus fumigatus*[J]. Chemical Geology, 2012, 306: 1-9
- [24] Singh H, Reddy MS. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils[J]. European Journal of Soil Biology, 2011, 47(1): 30-34
- [25] Jain N, Sharma DK. Biohydrometallurgy for nonsulfidic minerals-areview[J]. Geomicrobiology Journal, 2004, 21(3): 135-144
- [26] Song M, Pedruzzi I, Li P, et al. Potassium extraction from biotite by *Penicillium* and *Aspergillus*[J]. Advanced Materials Research, 2013, 825: 423-426
- [27] Villena GK, Fujikawa T, Tsuyumu S, et al. Structural analysis of biofilms and pellets of *Aspergillus niger* by confocal laser scanning microscopy and cryo scanning electron microscopy[J]. Bioresource Technology, 2010, 101(6): 1920-1926
- [28] Lian B, Fu PQ, Mo DM, et al. A comprehensive review of the mechanism of potassium releasing by silicate bacteria[J]. Acta Mineralogica Sinica, 2002, 22(2): 179-183 (in Chinese) 连宾,傅平秋,莫德明,等. 硅酸盐细菌解钾作用机理的综合 效应[J]. 矿物学报, 2002, 22(2): 179-183
- [29] Sheng XF, Huang WY, Cao XY. Dissolution of feldspar and potassium uptake by the strain NBT of silicate bacterium[J]. Plant Nutrition and Fertilizer Science, 2001, 7(4): 459-466 (in Chinese) 盛下放,黄为一,曹晓英. 硅酸盐细菌 NBT 菌株解钾效能及

盈下放, 页为一, 曾妃英. 硅酸温细菌 INBT 固林鼾开双能及 对钾的吸持作用[J]. 植物营养与肥料学报, 2001, 7(4): 459-466

- [30] Wu L, Jacobson AD, Chen HC, et al. Characterization of elemental release during microbe-basalt interactions at *T*=28 °C[J]. Geochimica et Cosmochimica Acta, 2007, 71(9): 2224-2239
- [31] Liermann LJ, Barnes AS, Kalinowski BE, et al. Microenvironments of pH in biofilms grown on dissolving silicate surfaces[J]. Chemical Geology, 2000, 171(1): 1-16
- [32] Morrow CP, Nangia S, Garrison BJ. Ab initio investigation of dissolution mechanisms in aluminosilicate minerals[J]. The Journal of Physical Chemistry A, 2009, 113(7): 1343-1352