© 2015 by Institute of Microbiology, CAS DOI: 10.13344/j.microbiol.china.140755

猪链球菌 2型 Dbp 缺失株的构建及特性分析

叶琳璐 1 吴光燕 2 张炜 1*

(南京农业大学 动物医学院 江苏 南京 210095)

摘 要:【目的】通过构建 DNA 结合膜蛋白(DNA-binding membrance protein, Dbp)基因的缺失株,探究 Dbp 基因对猪链球菌 2 型强毒株毒力的影响。【方法】通过 PCR 检测 Dbp 基因的分布。利用同源重组原理构建 Dbp 基因上下游片段的重组质粒,将构建好的质粒电转入 ZY05719 感受态细胞中,筛选 Dbp 缺失突变株,通过 PCR 及测序分析对其进行验证。生物学特性分析比较缺失株 ΔDbp 和野毒株 ZY05719 在生长速率、形态特征、毒力等方面的差异。【结果】 Dbp 基因为猪链球菌 2 型强毒株中相对保守基因,构建了 Dbp 基因缺失株 ΔDbp 。体外实验结果显示 Dbp 基因缺失株的生长速率在对数期减慢,并且缺失株 ΔDbp 的荚膜同野毒株存在显著差异,斑马鱼实验结果表明缺失株 ΔDbp 毒力下降。【结论】 Dbp 与猪链球菌 2 型的毒力相关,在猪链球菌 2 型的致病过程中起一定的作用,这丰富了对该菌致病机理的认识。

关键词: 猪链球菌 2 型, 缺失株构建, 生物学特性, 致病性

Construction and characterization of *Dbp* gene knock-out mutant in *Streptococcus suis* 2

YE Lin-Lu¹ WU Guang-Yan² ZHANG Wei^{1*}

(College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China)

Abstract: [Objective] The contribution of DNA-binding membrane protein (Dbp) to the virulence of Streptococcus suis 2 was evaluated by constructing a gene knock-out mutant of Dbp. [Methods] The distribution of Dbp was analyzed by PCR. An isogenic Streptococcus suis 2 mutant of Dbp, ΔDbp , was constructed based on the principle of homologous recombination, and the biological characteristics, pathogenicity of ΔDbp and wild type ZY05719 was compared. [Results] The Dbp gene may be a relatively conserved in different source of Streptococcus suis 2. Compared with wild type ZY05719, the growth rate of ΔDbp is significantly slower in the logarithmic phase, and the capsule of ΔDbp is different from wild type ZY05719. Zebrafish pathogenicity test showed that the LD_{50} of ΔDbp had a significant decrease as compared with wild type ZY05719. [Conclusion] Dbp gene is critical for the full virulence of Streptococcus suis 2. All these help us to understand its pathogenic mechanism.

Keywords: Streptococcus suis 2, Gene knock-out mutant, Biological characteristics, Pathogenicity

基金项目: 国家自然科学基金优秀青年基金项目(No. 31322054); 教育部新世纪优秀人才支持计划项目(No. NCET-110671, NCET-110671); 农业部行业化益性专项项目(No. 201303041)

^{*}通讯作者: Tel: 86-25-84395328; ⊠: vszw@njau.edu.cn

猪链球菌(Streptococcus suis, SS)是一种重要的 猪病病原,可引起猪的多种疾病,包括脑膜炎、败 血症和心肌内膜炎等病变,严重时可造成死亡。根 据荚膜多糖(CPS)的不同,可将猪链球菌分为33个 血清型。其中猪链球菌 2型(SS2)流行最广、致病力 最强,是一种重要的人畜共患传染病,能引起包括 人和猪在内的多种疾病[1]。SS2 引起的猪链球菌病 在世界范围内均有分布,造成重大的人员伤亡和经 济损失,受到全世界的广泛关注 $^{[2]}$ 。SS2 的发病机 理与其毒力因子密切相关,一些可能的毒力因子包 括荚膜多糖(CPS)、猪溶血素(SLY)、胞外因子(EF)、 酶类、纤连蛋白、调控系统以及孤立反应原件^[3-8] 等,但其致病机理仍不清楚。前期通过比较基因组 学的方法, 比较 SS2 弱毒株 TI5 和强毒株 ZY05719 的差异基因,筛选出 ZY05719 中有而 TI5 中无的基 因,这些差异基因可能与强毒株的毒力相关。通过

生物信息学分析等手段从中筛选出目的基因 Dbp, Dbp 基因与 SS2 P1/7 中的 DNA 结合膜蛋白 (DNA-binding membrance protein)同源性很高,因此 将该基因命名为 Dbp。氨基酸序列研究发现,Dbp 的蛋白结构有一特定区域与 XRE 超家族的结构高度同源,包含螺旋-转角-螺旋的 DNA 结合区域,为 DNA 结合膜蛋白。为了研究 Dbp 与 SS2 毒力的相关性,我们通过构建基因缺失株 ΔDbp ,比较缺失株 和野毒株各项生物特性及致病性,以期初步探究 Dbp 基因在 SS2 致病性方面发挥的作用。

1 材料与方法

1.1 材料

1.1.1 菌株和质粒:本实验所用菌株、质粒见表 1。 95 株不同来源的猪链球菌用于 PCR 检测。引物合成于上海 Invitrogen 公司(表 2)。

	表 1 菌株及质粒			
Table 1 Summary of bacterial strains and plasmids used in this study				
菌株或质粒	特性或功能	来源		
Strains or plasmids	Characteristic or function	Source		
Bacterial strains				
ZY05719	Virulent strain of SS2 isolated from dead pig	Our lab		
T15	Avirulent strain of SS2	DLO-Institute		
ΔDbp	Isogenic Dbp mutant of strain ZY05719	This work		
E. coli DH5α	Cloning host for maintaining the recombinant plasmids This work			
Plasmids				
pMD19-T vector	Clong vector	Invitrogen		
PSET4s	Thermo-sensitive suicide vector, Spc ^r	Our lab		
ad-PSET4s	pSET4S designed for knockout of <i>Dbp</i> , Spc ^r	This work		

表 2 PCR 扩增及检测引物 Table 2 Primers used for PCR amplification and detection				
引物	引物序列	限制性内切酶	功能	
Primers	Primers sequence $(5' \rightarrow 3')$	Restriction site	Function	
DBA-1	TTGTTGACGAACTTTTTTCA		Analyze distribution	
DBA-2	CACCGCTTTAGAAAAGAACAC		of The Dbp gene	
dbp-A	CTGATC <u>GTCGAC</u> AGCCTGACCAGCTAGAAAGTAC	Sal I	Upstream border of	
dbp-B	CGTCAACAATTTTTCGTTTTAA		Dbp	
dbp-C	TTAAAACGAAAAATTGTTGACGTAAGATGACCAAACACCAACG		Upstream border of	
dbp-D	GAGTCAGAATTC CCTGTCCCATGTAAGACTTGA	EcoR I	Dbp	
dbp-X	CCCTGCTTTTTGTCAGCCACG		Detection	
dbp-Y	CAGCTTGGACTGGTCCACTT			

1.1.2 主要试剂和仪器: Todd-Hewitt Broth (THB) 购于美国 BD 公司;限制性内切酶、Premix Taq^{TM} 、T4 DNA 连接酶、DL2000 marker、DL15000 marker、DNA 胶回收试剂盒,基因组提取试剂盒购于大连 TaKaRa 宝生物工程有限公司;质粒提取试剂盒购于 OMEGA 公司;壮观霉素(Spc+)购于 Sigma 公司;Ultrospec2000 型紫外分光光度计购于 Bio-Rad 公司;Gene Pulser Xcell™型电穿孔仪购于 BTX 公司。

1.2 Dbp 基因在 SS 中分布检测

根据 Dbp 全长 ORF 序列,利用 Oligo 6.24、DNAStar 软件设计引物 DBA-1 和 DBA-2,通过 PCR 检测 Dbp 基因在猪链球菌中的分布。PCR 反应体系的体积为 25 μ L,其中 Premix Taq^{TM} (包括 1.25 U/25 μ L 的 DNA 聚合酶,0.4 mmol/L 的 dNTPs,4 mmol/L 的 Mg²⁺) 12.5 μ L,猪链球菌 2 型 ZY05719的 DNA 模板(100 ng/L) 1 μ L,引物 DBA-1、DBA-2(10 μ mol/L)各 1 μ L,ddH₂O 9.5 μ L。PCR 反应程序为:94 °C 5 min;94 °C 30 s,50 °C 30 s,72 °C 40 s,30 个循环;72 °C 10 min。

1.3 Dbp 基因缺失株的构建和鉴定

以 ZY05719 基因 DNA 为模板,用引物dbp-A/dbpB、dbp-C/dbp-D分别扩增 Dbp 基因的上、下游同源臂 ab 和 cd,然后以此为模板用引物dbp-A/dbp-D 融合 PCR 扩增出 ad 片段。在限制性内切酶 Sal I和 EcoR I及 T4 连接酶的作用下,将ad 与自杀性质粒 pSET4S 进行连接,将连接产物转化入 DH5α 感受态中,构建了缺失载体 ad-pSET4S (图 1)。将构建的载体 ad-pSET4S 电转化入 ZY05719的感受态细胞中,利用壮观霉素抗性进行初步的筛选,并用 PCR 和测序进行鉴定。

1.4 生长特性分析

SS2 野毒株 ZY05719 和缺失株 ΔDbp 划线接种在不含抗生素的 THB 固体培养基上,37 °C 培养过夜,挑取单菌落,在试管中37 °C、180 r/min 振荡培养过夜。次日用分光光度计测定 OD_{600} 值,调整各菌液浓度到 1.0×10^8 CFU/mL,按 1:100 接种到不

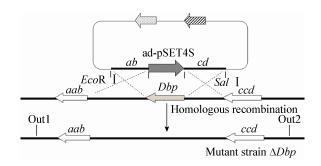


图 1 Dbp 突变株的构建示意图

Figure 1 Construction strategy of *Dbp* gene knock-out

含抗生素的新鲜 THB 液体培养基中, 37 °C、180 r/min 振荡培养。以 THB 液体培养基为空白对照, 每隔 1 h 无菌取样,用分光光度计测定培养物 OD_{600} ,连续观察 12 h,比较 ZY05719 和缺失株 ΔDbp 的 OD_{600} 的差异。

1.5 形态学比较

挑取 THB 平板上的 SS2 野毒株 ZY05719 和缺失株 ΔDbp 单菌落于 THB 液体培养基中, 37 °C、180 r/min 振荡培养, 吸取 ZY05719 和 ΔDbp 菌液,用灭菌的 PBS (pH 7.4) 4 000 r/min、5 min 洗 3 遍,透射电子显微镜下观察二者的形态。

1.6 斑马鱼毒力试验

挑取野毒株 ZY05719 和缺失株 ΔDbp 复壮后的 单菌落于 THB 液体培养基中, 37 °C、180 r/min 振荡培养过夜。菌液按 1%接种到新鲜 THB 液体培养基中, 37 °C、180 r/min 振荡培养到 OD_{600} 为 0.6,将菌液浓度调到 1.0×10^9 CFU/mL,再 10 倍比稀释到 1.0×10^4 CFU/mL,将斑马鱼分为 8 组,每组 15尾,斑马鱼泄殖腔注射 0.02 mL/尾,12 h 后开始记录各组死亡情况。

2 结果与分析

2.1 Dbp 基因分布检测

通过 PCR 方法检测基因 Dbp 在 95 株(50 株 SS2, 45 株 SS 其他血清型)猪链球菌中的分布。结果显示, Dbp 基因分布于多数 SS2 强毒株中(44/50), 而其他猪链球菌血清型中 Dbp 基因分布少(8/45), 表 3 为部分实验结果。

	表 3 Dbp 基因片段的分布 Table 3 Distribution of the Dbp-specific DNA fragments						
菌株 Strains	血清型 Serotype	来源 Source	阴性/阳性 <i>Dbp</i>	菌株 Strains	血清型 Serotype	来源 Source	阴性/阳性 <i>Dbp</i>
227	2	Sichuan	+	ZJHN090702	2	Zhejiang	+
11611	2	Germany	+	ZY05721	2	Zhejiang	+
BA853	2	ATCC	+	26S1	1/2	Sichuan	-
NH4	2	Shanghai	+	SH28	1	Canada	-
P4254	2	Germany	-	hb1001	3	Hebei	-
9801	2	Jiangsu	+	yn19	3	Vietnam	-
hb1002	2	Hebei	+	090318	5	Shanghai	-
hb1008	2	Hebei	+	yn5	5	Vietnam	-
yn28	2	Vietnam	+	SH04805	7	Shanghai	-
SS ₂ -TY	2	Jiangsu	+	090843	8	Shanghai	-
SS ₂ 5995	2	Jiangsu	+	JX041226	9	Jiangxi	-
HZ060601	2	Denmark	-	yn1	9	Vietnam	-
SS ₂ 06XS033	2	Denmark	+	SH13	10	Shanghai	-
SS ₂ 07JX1101	2	Jiangsu	+	yn12	10	Vietnam	+
SS ₂ 07JX1102	2	Hunan	+	AH091106	11	Anhui	-
SS ₂ 07HN137	2	Zhejiang	+	yn9	11	Vietnam	-
LP081102	2	Zhejiang	+	hb1016	12	Hebei	-
HN0104001	2	Henan	-	091120	14	Shanghai	+
CHZ-05806-1	2	Zhejiang	+	yn23	15	Vietnam	-
JDZ-05802-1	2	Zhejiang	+	0902-005m-x	19	Shanghai	-
GH05458	2	Zhejiang	+	090202	20	Shanghai	-
JX0908004	2	Anhui	+	HT50	24	Sichuan	+
ZJ92091101	2	Jiangxi	_	090306	25	Shanghai	-
JR05730	2	Sichuan	+	bs6	26	Sichuan	+
ZG05464	2	Zhejiang	+	yn16	28	Vietnam	-
SS-07-01	2	Jiangsu	+	090416	29	Shanghai	+
07-SS-01	2	Jiangsu	+	XZ202	31	Xizang	-
07-SS-02	2	Sichuan	+	yn15	32	Vietnam	+

2.2 基因缺失质粒的构建和鉴定

以 ZY05719 基因 DNA 为模板, PCR 扩增出了 Dbp 的上游臂 ab 和下游臂 cd, 然后融合 PCR 扩增 出了片段 ad (1 335 bp, 图 2)。在相应的限制性内切 酶和 T4 DNA 连接酶的作用下,将 ad 片段连接到了 PSET4s 上。然后将构建的载体 ad-pSET4S 电转化入 ZY05719 的感受态细胞中,用引物 dbp-A/D 进行筛选,PCR 扩增出 1 335 bp 大小的片段,与 ZY05719 亲本株相比,明显少了 525 bp,这正是要缺失的 Dbp 目的片段(图 3)。提取缺失株的质粒,用引物 dbp-X/Y 进行 PCR 扩增,将产物送至上海桑尼生物公司进行测序,结果显示 Dbp 基因片段已完全缺失,表明已经成功构建了ΔDbp 缺失株。

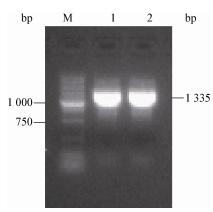


图 2 PCR产物

Figure 2 Result of PCR products

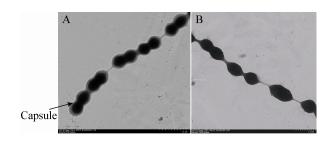
Note: 1: DL5000 marker; 1, 2: PCR products with ad.



图 3 △Dbp 缺失株的 PCR 鉴定 Figure 3 PCR confirmation of △Dbp

Note: M: DL5000 marker; 1: Δ*Dbp*; 2: ZY05719.

2.3 形态学比较


透射电子显微镜下观察结果显示,SS2 野毒株 ZY05719 和缺失株 ΔDbp 菌体形态呈链状,均为椭圆形或者圆形,菌体形态无明显的差异,但是荚膜特性略有区别,缺失株 ΔDbp 荚膜厚度薄于野毒株 ZY05719 (图 4)。

2.4 生长特性分析

SS2 野毒株 ZY05719 和缺失株 ΔDbp 在 37 °C、180 r/min 振荡培养,每隔 1 h 取样,在相同的培养条件下,以培养时间为横坐标, OD_{600} 为纵坐标,绘制得到 SS2 野毒株 ZY05719 和缺失株 ΔDbp 的生长曲线(图 5)。结果表明 ZY05719 和 ΔDbp 生长速率在对数生长期有差异,到达稳定期后趋于一致。

2.5 斑马鱼毒力试验

用不同浓度的 SS2 野毒株 ZY05719 和缺失株 ΔDbp 对斑马鱼注射攻毒, 12 h 后开始记录斑马鱼的发病死亡情况,每天观察 3 次。试验中 SS2 菌株均能引起斑马鱼的典型病变,腹部发红等。由表 4

图 4 细菌形态比较

Figure 4 Microscope of wild type strain and mutant strain Note: A: ZY05719; B: ΔDbp .

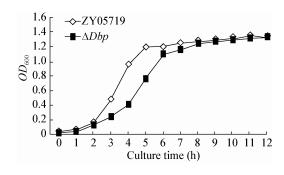


图 5 ZY05719 和△Dbp 的生长曲线

Figure 5 Growth of curve of ZY05719 and $\triangle Dbp$ strains

表 4 ZY05719 和∆Dbp 的 LD ₅₀ 测定结果 Table 4 Calculation of LD ₅₀ on ZY05719, ∆Dbp for zebrafish				
攻毒剂量	死亡数 斑马鱼数量 Death number			
Dose of challenge (CFU)	Zebrafish number	ZY05719	ΔDbp	
2×10 ⁷	15	15/15	15/14	
2×10 ⁶	15	15/11	15/4	
2×10 ⁵	15	15/3	15/1	
2×10 ⁴	15	15/1	15/0	
2×10 ³	15	15/0	15/0	
LD_{50}		5.97×10 ⁵	3.25×10^6	

可知野毒株 ZY05719 的 LD_{50} 为 5.97×10^5 CFU/尾。 缺失株 ΔDbp 的 LD_{50} 为 3.25×10^6 CFU/尾。由实验结 果可知,Dbp 基因缺失后,SS2 毒力明显下降(表 4)。

3 讨论

猪链球菌的发病机理与毒力因子密切相关,然而目前还有很多毒力因子仍不清楚,揭示出相关毒力因子是目前研究的热点和难点。学者们应用不同工具对 SS2 的毒力因子进行研究,其中包括体内表达技术、信号标签突变等鉴定出了部分毒力因子[9-11]。前期通过比较基因组学的方法将 SS2 欧洲标准弱毒株 T15 和强毒株 ZY05719 进行了全基因序列比较,找出 T15 中无而 ZY05719 中有的基因片段,排除已经研究过的毒力因子,如 nadR、Rgg、RveS等,筛选出了 Dbp 基因。Dbp 的开放阅读框(ORF)为 537 bp,位于基因组的 1 416 248-1 416 784 位置。该基因编码 178 个氨基酸(aa),等电点为 8.56。Dbp 的 aa 序列分析结果显示 Dbp 基因与化脓链球菌等高度同源。本实验之前 Dbp 基因在猪链球菌及其他病原菌中未被研究过。

本研究所用的 95 株猪链球菌菌株分离自不同地区、不同年代的发病猪。PCR 基因分布检测显示, Dbp 基因存在于大多数 SS2 中,阳性率为 88%,而在猪链球菌其它血清型中分布较少,阳性率为 17.8%,说明 Dbp 基因为 SS2 强毒株的相对保守基因,其可能与毒力相关。

经过对 Dbp 核酸及氨基酸序列的分析发现, Dbp 蛋白有一特定区域(26-81 aa)与 XRE 转录因子 超家族结构高度同源,包含螺旋-转角-螺旋的 DNA 结合区域,为 DNA 结合蛋白。据报道 spa 编码金 黄色葡萄球菌的毒力因子——A蛋白, XdrA为 spa 的启动子, 因此参与金黄色葡萄球菌的致病过 程^[12]。XdrA 具有同 XRE 超家族相似的螺旋-转角-螺旋结构,为菌体内保守的 DNA 结合蛋白,而 Dbp 同样为 DNA 结合蛋白并与细菌的毒力相关,其可 能在功能上与 XdrA 类似, 但仍需进一步验证。此 外, SarZ 为已知的 DNA 结合蛋白, 其与金黄色葡 萄球菌的致病性也相关^[13]。本实验通过基因敲除技 术,获得基因突变株 ΔDbp 。通过生物学功能试验, 发现缺失株 ΔDbp 与 SS2 野毒株 ZY05719 相比, 缺 失株 ΔDbp 的毒力明显下降, 说明 Dbp 基因在 SS2 致病过程中发挥一定的作用。

参考文献

- [1] Wisselink HJ, Smith HE, Stockhofe-Zurwieden N, et al. Distribution of capsular types and production of muramidase-released protein (MRP) and extracellular factor (EF) of Streptococcus suis strains isolated from diseased pigs in seven European countries[J]. Veterinary Microbiology, 2000, 74(3): 237-248
- [2] Gottschalk M, Xu J, Calzas C, et al. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen[J]. Future Microbiology, 2010, 5(3): 371-391
- [3] Houde M, Gottschalk M, Gagnon F, et al. Streptococcus suis

- capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition[J]. Infection and Immunity, 2012, 80(2): 506-517
- [4] Benga L, Fulde M, Neis C, et al. Polysaccharide capsule and suilysin contribute to extracellular survival of *Streptococcus suis* co-cultivated with primary porcine phagocytes[J]. Veterinary Microbiology, 2008, 132(1/2): 211-219
- [5] Wang C, Li M, Feng Y, et al. The involvement of sortase A in high virulence of STSS-causing *Streptococcus suis* serotype 2[J]. Archives of Microbiology, 2009, 191(1): 23-33
- [6] Li W, Wan Y, Tao Z, et al. A novel fibronectin-binding protein of Streptococcus suis serotype 2 contributes to epithelial cell invasion and in vivo dissemination[J]. Veterinary Microbiology, 2013, 162(1): 186-194
- [7] Li M, Wang C, Feng Y, et al. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive *Streptococcus suis* serotype 2[J]. PLoS One, 2008, 3(5): e2080

- [8] Li J, Tan C, Zhou Y, et al. The two-component regulatory system CiaRH contributes to the virulence of *Streptococcus suis* 2[J]. Veterinary Microbiology, 2011, 148(1): 99-104
- [9] Jiang H, Fan HJ, Lu CP. Identification and distribution of putative virulent genes in strains of *Streptococcus suis* serotype 2[J]. Veterinary Microbiology, 2009, 133(4): 309-316
- [10] Wilson TL, Jeffers J, Rapp-Gabrielson VJ, et al. A novel signature-tagged mutagenesis system for *Streptococcus suis* serotype 2[J]. Veterinary Microbiology, 2007, 122(1/2): 135-145
- [11] Li W, Lu L, Chen H, et al. Identification of *Streptococcus suis* genes preferentially expressed under iron starvation by selective capture of transcribed sequences[J]. FEMS Microbiology Letters, 2009, 292(1): 123-133
- [12] McCallum N, Hinds J, Ender M, et al. Transcriptional profiling of *Xdr*A, a new regulator of *spa* transcription in *Staphylococcus aureus*[J]. Journal of Bacteriology, 2010, 192(19): 5151-5164
- [13] Kaito C, Morishita D, Matsumoto Y, et al. Novel DNA binding protein *SarZ* contributes to virulence in *Staphylococcus aureus*[J]. Molecular Microbiology, 2006, 62(6): 1601-1617

征订启事

欢迎订阅《微生物学通报》

《微生物学通报》创刊于 1974 年,是中国科学院微生物研究所和中国微生物学会主办,国内外公开发行,以微生物学应用基础研究及技术创新与应用为主的综合性学术期刊。刊登内容包括:基础微生物学研究,农业微生物学研究,工业微生物学研究,医学微生物学研究,食品微生物学研究,环境微生物学研究,微生物功能基因组研究,微生物蛋白组学研究,微生物模式菌株研究,微生物工程与药物研究,微生物技术成果产业化及微生物教学研究改革等。

本刊为中国自然科学核心期刊。曾获国家优秀科技期刊三等奖,中国科学院优秀科技期刊三等奖, 北京优秀科技期刊奖,被选入新闻出版总署设立的"中国期刊方阵"并被列为"双效"期刊。

自 2008 年本刊已经全新改版,由双月刊改为月刊,发表周期缩短,内容更加丰富详实。**欢迎广大读者到邮局订阅或直接与本刊编辑部联系购买**,2015 年每册定价 58 元,全年 696 元,我们将兔邮费寄刊。

邮购地址: (100101) 北京朝阳区北辰西路 1 号院 3 号中国科学院微生物研究所 《微生物学通报》编辑部 Tel: 010-64807511; E-mail: bjb@im.ac.cn, tongbao@im.ac.cn

网址: http://journals.im.ac.cn/wswxtbcn

国内邮发代号: 2-817; 国外发行代号: M413