The control effect of Trichoderma harzianum EMF910 on the root rot pathogens of Astragalus membranaceus in Ningxia saline-alkali regions
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • | | | |
  • Comments
    Abstract:

    [Background] Root rot is widespread and harmful, being one of the most common diseases in the process of large-scale cultivation of Astragalus membranaceus in the northwest saline-alkali regions of China, which causes a decrease in yield and quality of A. membranaceus, and there is currently no effective control method. Trichoderma harzianum has a significant control effect on the pathogens causing root rot in rhizome crops, but its effect under saline-alkali conditions has been reported rarely. [Objective] To clarify the main pathogens causing root rot in A. membranaceus in the northwest saline-alkali areas of China, and to explore the inhibitory effect of T. harzianum EMF910 on these main pathogens under saline-alkali conditions. [Methods] The pathogens causing root rot of A. membranaceus in large-scale cultivation in the saline-alkali areas of northwest China were determined through tissue isolation, in vitro tie-back, morphological, and molecular biology methods. The inhibitory effect of T. harzianum EMF910 on these pathogens under saline-alkali conditions was studied through plate confrontation experiments. The control effect of T. harzianum EMF910 on root rot in A. astragalus in saline-alkali soil was investigated by pot experiment. [Results] The main pathogens causing root rot in A. astragalus in the northwest region were identified as Fusarium solani X12 and Fusarium obliquiseptatum P1. After culturing for 7 days under normal conditions (0% NaCl, pH natural), the plate inhibition rates of T. harzianum EMF910 on X12 and P1 reached 77.93% and 73.82%, respectively. After culturing for 7 days under saline-alkali conditions (1% NaCl, pH=8.5), the plate inhibition rates of T. harzianum EMF910 on X12 and P1 reached 70.22% and 67.95%, respectively. After culturing for 12 hours under normal conditions (0% NaCl, pH natural), the spore germination inhibition rates of T. harzianum EMF910 on X12 and P1 reached 87.21% and 86.11%, respectively. After culturing for 12 hours under saline-alkali conditions, the spore germination inhibition rates of T. harzianum EMF910 on X12 and P1 reached 72.29% and 64.47%, respectively. The pot experiments showed that in A. membranaceus pre-infected with root rot pathogens, the survival rate of A. membranaceus treated with T. harzianum EMF910 was 56.3%, while the survival rate of the control group treated with water without T. harzianum EMF910 was only 12.5%. The statistical survival rate of A. membranaceus with root rot showed that the incidence rate of root rot in T. harzianum EMF910 treatment group was 33.3%, while that in the water control group without T. harzianum EMF910 was 50.0%. [Conclusion] The main pathogens causing root rot in A. mezmbranaceus in the northwest saline-alkali areas of China are mainly F. solani and F. obliquiseptatum. T. harzianum EMF910 can effectively inhibit the growth and spore germination of these pathogens under saline-alkali conditions (1% NaCl, pH 8.5), but the inhibitory effect is lower compared to that under normal conditions (0% NaCl, pH natural). T. harzianum EMF910 has a good control effect on root rot in A. membranaceus in saline-alkali soil. These results provide data support for the biological control of root rot in A. membranaceus in saline-alkali areas of Ningxia using T. harzianum EMF910 and also provide a reference for the use of T. harzianum EMF910 to control the root rot in other saline-alkali areas of China.

    Reference
    [1] 江远玲, 冯楠, 邵欣宇, 黄佳. 黄芪的现代药理作用研究进展[J]. 西南医科大学学报, 2023, 46(5): 456-460. JIANG YL, FENG N, SHAO XY, HUANG J. Research progress of modern pharmacological function of Astragalus membranaceus[J]. Journal of Southwest Medical University, 2023, 46(5): 456-460(in Chinese).
    [2] 国家药典委员会. 中华人民共和国药典3部[M]. 北京: 化学工业出版社, 2010. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: 3[M]. Beijing: Chemical Industry Press, 2020(in Chinese).
    [3] 马桂花, 段晓明, 徐文华, 周渊涛, 马海霞, 马伟丽, 祁鹤兴. 蒙古黄芪根腐病病原鉴定及防治药剂室内筛选[J]. 草地学报, 2022, 30(5): 1122-1130. MA GH, DUAN XM, XU WH, ZHOU YT, MA HX, MA WL, QI HX. Identification and laboratory screening of chemical agents of root rot pathogens of Astragalus membranaceus var. mongholicus[J]. Acta Agrestia Sinica, 2022, 30(5): 1122-1130(in Chinese).
    [4] 祖未希, 赵晓霞, 高芬. 芽孢杆菌R57对黄芪的防病提质作用及其鉴定[J]. 中国农学通报, 2022, 38(21): 129-135. ZU WX, ZHAO XX, GAO F. Quality promotion and disease control effects of Bacillus strain R57 on Astragalus membranaceus var. mongholicus and its identification[J]. Chinese Agricultural Science Bulletin, 2022, 38(21): 129-135(in Chinese).
    [5] 张爱梅, 李曦冉, 郭保民, 陈鑫. 黄芪根腐病生防菌株的筛选鉴定及其防效评价[J]. 西北农业学报, 2021, 30(12): 1905-1913. ZHANG AM, LI XR, GUO BM, CHEN X. Screening, identification, and biocontrol effect of antagonistic bacteria against Astragalus membranaceus root rot[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(12): 1905-1913(in Chinese).
    [6] 赵晓霞, 牛世全, 文娜, 苏锋锋. 黄芪根腐病生防芽孢杆菌的筛选鉴定与盆栽防效试验[J]. 生物技术通报, 2019, 35(9): 107-111. ZHAO XX, NIU SQ, WEN N, SU FF. Screening and identification of biocontrol Bacillus sp. against Astragalus root rot and its pot experiment[J]. Biotechnology Bulletin, 2019, 35(9): 107-111(in Chinese).
    [7] 于长平. 药用植物土传病害及生物防治的研究进展[J]. 吉林农业(下半月), 2018(8): 75. YU CP. Research progress on soil-borne diseases of medicinal plants and their biological control[J]. Jilin Nongye, 2018(8): 75(in Chinese).
    [8] KIM S, KIM TH, CHUNG MN, LEE Y, LEE IB, LEE H, PARK W. Incidence rates of root rot in sweetpotato caused by cultivation soil and soil microorganisms during storage periods[J]. Frontiers in Plant Science, 2022, 13: 897590.
    [9] TAN L, XIAO YS, ZENG WA, GU SS, ZHAI ZG, WU SL, LI PF, FENG K, DENG Y, HU QL. Network analysis reveals the root endophytic fungi associated with Fusarium root rot invasion[J]. Applied Soil Ecology, 2022, 178: 104567.
    [10] LIAO XF, HOU WH, TANG XF, ZHAO YH. Identification of the Roselle root rot pathogen and its sensitivity to different fungicides[J]. Arabian Journal of Chemistry, 2022, 15(7): 103932.
    [11] DINANGO VN, EKE P, YOUMBI DY, KEPNGOP KOUOKAP LR, TOGHUEO KOUIPOU RM, TAMGHE GG, NGUEMNANG MABOU LC, WAKAM LN, BOYOM FF. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot[J]. Rhizosphere, 2022, 23: 100562.
    [12] 马莹莹, 关一鸣, 王秋霞, 李美佳, 潘晓曦, 张亚玉. 黄芪主要病害及防治措施研究进展[J]. 特产研究, 2019, 41(4): 101-107. MA YY, GUAN YM, WANG QX, LI MJ, PAN XX, ZHANG YY. Research progress on main diseases and control measures of Astragalus membranaceus[J]. Special Wild Economic Animal and Plant Research, 2019, 41(4): 101-107(in Chinese).
    [13] WANG JL, ZHANG JF, MA JX, LIU L, LI JJ, SHEN T, TIAN YQ. The major component of cinnamon oil as a natural substitute against Fusarium solani on Astragalus membranaceus[J]. Journal of Applied Microbiology, 2022, 132(4): 3125-3141.
    [14] 危潇, 黎妍妍, 姚经武, 曹春霞, 黄大野. 哈茨木霉WF2菌株鉴定及对烟草黑胫病的防效[J]. 中南农业科技, 2023, 44(11): 12-15. WEI X, LI YY, YAO JW, CAO CX, HUANG DY. Identification of Trichoderma harzianum WF2 strain and its control effect on tobacco black shank disease[J]. South-Central Agricultural Science and Technology, 2023, 44(11): 12-15(in Chinese).
    [15] CHOWDHURY MR, AHMED SF, KHALID B, BONY ZF, ASHA JF, BHUIYAN MKA. Biocontrol efficiency of microencapsulated Trichoderma harzianum coupled with organic additives against potato stem rot caused by Sclerotium rolfsii[J]. Plant Stress, 2023, 9: 100181.
    [16] ABDELRHIM AS, HEMEDA NF, ALI MWAHEB M, OMAR MOA, DAWOOD MFA. The role of Trichoderma koningii and Trichoderma harzianum in mitigating the combined stresses motivated by Sclerotiniasclerotiorum and salinity in common bean (Phaseolusvulgaris)[J]. Plant Stress, 2024, 11: 100370.
    [17] ZHANG HF, KONG N, LIU B, YANG YF, LI CH, QI JY, MA Y, JI SD, LIU ZH. Biocontrol potential of Trichoderma harzianum CGMCC20739(Tha739) against postharvest bitter rot of apples[J]. Microbiological Research, 2022, 265: 127182.
    [18] Da SILVA BRITO F, Da COSTA DP, de SOUZA CAF, Da ROCHA GOMES FERREIRA de ALMEIDA DT, de LIMA LEITE ICH, GONÇALVES EP, de MEDEIROS EV. Selection and control efficacy of Trichoderma spp. against Fusarium solani and Lasiodiplodia theobromae causing root rot in forage Cactus[J]. Physiological and Molecular Plant Pathology, 2022, 122: 101900.
    [19] ERAZO JG, PALACIOS SA, PASTOR N, GIORDANO FD, ROVERA M, REYNOSO MM, VENISSE JS, TORRES AM. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386[J]. Biological Control, 2021, 164: 104774.
    [20] 李阔, 王红阳, 郭秀芝, 张成才, 王月枫, 郭兰萍. 木霉属真菌诱导根及根茎类中药材抗根腐病的研究及应用进展[J]. 中国中药杂志, 2023, 48(18): 4942-4949. LI K, WANG HY, GUO XZ, ZHANG CC, WANG YF, GUO LP. Advances in research and application of Trichoderma for inducing resistance against root rot diseases in root and rhizome of Chinese medicinal materials[J]. China Journal of Chinese Materia Medica, 2023, 48(18): 4942-4949(in Chinese).
    [21] 滕艳萍, 梁宗锁, 陈蓉. 木霉防治黄芪根腐病初步研究[J]. 西北农业学报, 2006, 15(2): 69-71. TENG YP, LIANG ZS, CHEN R. Preliminary study of Trichoderma against the root rot disease of astragallus[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2006, 15(2): 69-71(in Chinese).
    [22] 陈成, 龚高芬, 梁锦有, 窦峥嵘, 丁佳洁, 姜北, 王开玲. 白马雪山云南黄芪与灰毛康定黄芪根际微生物物种多样性及抗生物膜活性菌株筛选[J]. 微生物学通报, 2022, 49(9): 3813-3836. CHEN C, GONG GF, LIANG JY, DOU ZR, DING JJ, JIANG B, WANG KL. Rhizosphere microbial diversity of Astragalus yunnanensis and A. tatsienensis var. incanus in Baima Snow Mountain and screening of microorganisms with anti-biofilm activity[J]. Microbiology China, 2022, 49(9): 3813-3836(in Chinese).
    [23] 方中达. 植病研究方法[M]. 北京: 中国农业出版社, 2001: 6-13. FANG ZD. Research methods for plant diseases[M]. Beijing: China Agriculture Press, 2001: 6-13(in Chinese).
    [24] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979: 349-350. WEI JC. Handbook of fungal identification[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1979: 349-350. (in Chinese).
    [25] MIRONENKA J, RÓŻALSKA S, SOBOŃ A, BERNAT P. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: Metabolomic and proteomic studies[J]. Microbiological Research, 2021, 249: 126770.
    [26] 康贻军, 沈敏, 王欢莉, 赵庆新, 殷土学. 2株植物根际促生菌对番茄青枯病的生物防治效果评价[J]. 中国生物防治学报, 2012, 28(2): 255-261. KANG YJ, SHEN M, WANG HL, ZHAO QX, YIN TX. Biological control of tomato bacterial wilt caused by Ralstonia solanacearum with Erwinia persicinus Ra2 and Bacillus pumilus WP8[J]. Chinese Journal of Biological Control, 2012, 28(2): 255-261(in Chinese).
    [27] Booth. 镰刀菌属[M]. 陈其煐, 译. 北京: 中国农业出版社, 1988. Booth C. The genus fusarium[M]. Translated by CHEN QY. Beijing: China Agriculture Press, 1988(in Chinese).
    [28] 杨林毅, 陈泽历, 赖清玉, 陈潞, 孙雁, 唐朝辉, 赵明富, 文国松. 滇黄精腐皮镰刀菌的分离鉴定[J]. 湖北农业科学, 2019, 58(3): 65-67, 101. YANG LY, CHEN ZL, LAI QY, LAI QY, LAI QY, TANG (C/Z)H, ZHAO MF, WEN GS. Isolation and identification of Fusarium solani from Polygonatum kingianum[J]. Hubei Agricultural Sciences, 2019, 58(3): 65-67, 101(in Chinese).
    [29] 梅玉琴, 雷剑, 王连军, 柴沙沙, 靳晓杰, 程贤亮, 杨新笋, 朱国鹏. 甘薯根腐病研究进展[J]. 江苏师范大学学报(自然科学版), 2022, 40(4): 37-41. MEI YQ, LEI J, WANG LJ, CHAI SS, JIN XJ, CHENG XL, YANG XS, ZHU GP. Research progress on root rot of sweetpotato[J]. Journal of Jiangsu Normal University (Natural Science Edition), 2022, 40(4): 37-41(in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Xiaochen, ZHANG Hongjie, LI Shengbin, DONG Zhengdong, LONG Shupu, HUANG Xinguo, GUO Lanping, KANG Chuanzhi, LIANG Jian, MA Xiaokui. The control effect of Trichoderma harzianum EMF910 on the root rot pathogens of Astragalus membranaceus in Ningxia saline-alkali regions[J]. Microbiology China, 2024, 51(10): 4162-4180

Copy
Share
Article Metrics
  • Abstract:86
  • PDF: 278
  • HTML: 138
  • Cited by: 0
History
  • Received:December 10,2023
  • Adopted:April 30,2024
  • Online: October 08,2024
  • Published: October 20,2024
Article QR Code