Transformation-associated recombination cloning and integrated expression of biosynthetic gene cluster for kojic acid in Aspergillus niger
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Aspergillus niger is a commonly used filamentous fungal chassis, whereas the genetic manipulation of large DNA fragments of this fungus lacks tools and is inefficient. The massive genomic data include a large number of unidentified gene clusters for the synthesis of secondary metabolites, which are difficult to be cloned due to the large molecular weights. In addition, the relationships between most genes and products have not been resolved. [Objective] To develop a method for direct cloning of large DNA fragments for A. niger and achieve the heterologous production of kojic acid in A. niger by cloning and expressing the gene cluster (about 30 kb) for the biosynthesis of kojic acid from Aspergillus oryzae. [Methods] Transformation-associated recombination (TAR) cloning was employed to construct the TAR capture backbone vector pSEA-TAR for the transformation of A. niger. The homologous DNA sequences (about 1 kb) flanking the gene cluster for the biosynthesis of kojic acid were successively introduced into pSEA-TAR and separated by a unique digestion sequence of Xho Ⅰ. The obtained capture vector pSEA-KLR for the gene cluster was linearized by Xho Ⅰ and transformed into Saccharomyces cerevisiae VL6-48 together with the Not Ⅰ/Sbf Ⅰ digested A. oryzae genome containing the complete gene cluster as well as the flanking homologous sequences. The recombinants successfully capturing the gene cluster for the biosynthesis of kojic acid were screened by the medium lacking corresponding nutrients. The plasmid was extracted from the recombinant and electroporated into Escherichia coli for amplification. The Agrobacterium tumefaciens-mediated method was used for transformation of A. niger. The obtained transformants carrying the gene cluster for kojic acid biosynthesis were subjected to fermentation, and the kojic acid titer was measured. [Results] A large DNA fragment capture vector pSEA-TAR was obtained based on TAR cloning and adapted to the expression of A. niger with ARSH4/CEN6, TRP1, hph, and LB/RB-T-DNA repeats. pSEA-TAR-KA was obtained as a recombinant plasmid containing a gene cluster for the biosynthesis of kojic acid by an efficient homologous recombination system of S. cerevisiae, demonstrating a capture success rate of 5.9%. All the 10 A. niger recombinant strains (KA1-KA10) carrying the gene cluster produced kojic acid in fermentation, with the highest kojic acid titer (5.86 g/L) obtained by fermentation with the strain KA-2 for 7 d. [Conclusion] A TAR cloning system was constructed and adapted to A. niger for the efficient capture, recombination, and expression of large biosynthetic gene clusters. The performance of the system was verified by the capture of A. oryzae-derived gene cluster for the biosynthesis of kojic acid and the successful synthesis of kojic acid by A. niger. This study enriched the role of A. niger as a chassis in the green biomanufacturing of important compounds.

    Reference
    [1] YU RL, LIU J, WANG Y, WANG H, ZHANG HW. Aspergillus niger as a secondary metabolite factory[J]. Frontiers in Chemistry, 2021, 9: 701022.
    [2] 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. GUO YF, YAN RM, ZHANG XR, CAO W, LIU H. Metabolic engineering modification of Aspergillus niger for the production of d-glucaric acid[J]. Biotechnology Bulletin, 2022, 38(11): 227-237(in Chinese).
    [3] 周文娟, 付刚, 齐显尼, 郑小梅, 房欢, 夏苗苗, 张大伟, 王钦宏, 郑平, 王钰, 孙际宾. 发酵工业菌种的迭代创制[J]. 生物工程学报, 2022, 38(11): 4200-4218. ZHOU WJ, FU G, QI XN, ZHENG XM, FANG H, XIA MM, ZHANG DW, WANG QH, ZHENG P, WANG Y, SUN JB. Upgrading microbial strains for fermentation industry[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4200-4218(in Chinese).
    [4] MOHEDANO MT, MAO JW, CHEN Y. Optimization of pinocembrin biosynthesis in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2023, 12(1): 144-152.
    [5] ZHANG LJ, LIU X, LI JW, MENG YH, ZHAO GR. Improvement of betanin biosynthesis in Saccharomyces cerevisiae by metabolic engineering[J]. Synthetic and Systems Biotechnology, 2022, 8(1): 54-60.
    [6] WANG YQ, GUO YF, CAO W, LIU H. Synergistic effects on itaconic acid production in engineered Aspergillus niger expressing the two distinct biosynthesis clusters from Aspergillus terreus and Ustilago maydis[J]. Microbial Cell Factories, 2022, 21(1): 158.
    [7] LI MZ, ELLEDGE SJ. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC[J]. Nature Methods, 2007, 4(3): 251-256.
    [8] ZHU BG, CAI GF, HALL EO, FREEMAN GJ. In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations[J]. BioTechniques, 2007, 43(3): 354-359.
    [9] GIBSON DG, YOUNG L, CHUANG RY, VENTER JC, HUTCHISON CA, SMITH HO. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345.
    [10] 田方方, 何博, 吴毅. 基于酿酒酵母的大片段DNA组装与转移技术进展[J]. 中国生物工程杂志, 2022, 42(7): 101-112. TIAN FF, HE B, WU Y. Advances in large DNA assembly and transfer based on Saccharomyces cerevisiae[J]. China Biotechnology, 2022, 42(7): 101-112(in Chinese).
    [11] 王培霞, 马渊, 吴毅. 大DNA体内组装技术进展[J]. 生物加工过程, 2019, 17(1): 15-22. WANG PX, MA Y, WU Y. Advances in large DNA in vivo assembly[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(1): 15-22(in Chinese).
    [12] ITAYA M, FUJITA K, KUROKI A, TSUGE K. Bottom-up genome assembly using the Bacillus subtilis genome vector[J]. Nature Methods, 2008, 5(1): 41-43.
    [13] ORR-WEAVER TL, SZOSTAK JW, ROTHSTEIN RJ. Yeast transformation: a model system for the study of recombination[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(10): 6354-6358.
    [14] HE B, MA Y, TIAN FF, ZHAO GR, WU Y, YUAN YJ. YLC-assembly: large DNA assembly via yeast life cycle[J]. Nucleic Acids Research, 2023, 51(15): 8283-8292.
    [15] KEVIN R O, VO KT, MICHAELIS S, PADDON C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast[J]. Nucleic Acids Research, 1997, 25(2): 451-452.
    [16] MANIVASAKAM P, WEBER SC, McELVER J, SCHIESTL RH. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 1995, 23(14): 2799-2800.
    [17] KOUPRINA N, LARIONOV V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution[J]. Nature Reviews Genetics, 2006, 7(10): 805-812.
    [18] KOUPRINA N, LARIONOV V. Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae[J]. Nature Protocols, 2008, 3(3): 371-377.
    [19] AWAL RP, LEFEVRE CT, SCHÜLER D. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense[J]. mBio, 2023, 14(4): e0328222.
    [20] BELLER P, FINK P, WOLF F, MÄNNLE D, HELMLE I, KUTTENLOCHNER W, UNTERFRAUNER D, ENGELBRECHT A, STAUDT ND, KULIK A, GROLL M, GROSS H, KAYSSER L. Characterization of the cystargolide biosynthetic gene clu獳?楥湲??楮捤爠潦扵楮潣汴潩杯祮??㈠ち????????????と???扥牴?孹??嵲?坮啳?乥塲???唠?乹???????乔?呥????啲?????呦?剂?捯汬潯湧楩湣条?愠湃摨?業湩瑳整杲特愬琠攲搰′漴瘬攠爳攰砰瀨爱攩猺猠椱漰渵‵漰昷???摲放浛攲琱桝礠汙捁桍汁潎牁瑋敁琠牋愬挠祒捅汙楎湏敌?打椠潋獁礬渠瑋桅敒瑓楔捅?朠敒湄攬?捒汙畁獎琠敋牓?椠湇??楚?卌瑅牚攠灄瑊漬洠祎捉敚獅?愠畖爬攠潄晏慒捒楅敓湔獅??椠?孃?崠???捒瑅愠??椮漠捄桩楲浥楣捴愠?敬瑯??楮潧瀠桡祮獤椠捲慥?卡楣湴楯捲慩??㈠は???????????????????????扢物?孳?の嵴?奥???嘠?健??????乳???唠??剥?????器?删???卩??卯??剣???呲???奣???噁?噊???啐??剣??????煳甠慯摦爠畴灨汥攠硎?獴瑩牯畮捡瑬甠牁散獡?楥湭?戠慯捦琠敓牣楩慥??扥楳漠汯潦朠楴捨慥氠?牮敩汴敥癤愠湓捴敡?慥湳搠?灦漠瑁敭湥瑲楩慣污?愠猲‰愱渴?愠渱琱椱洨椵挩爺漠戱椹愵氷?琱愹父朲攮琼孢?崾?′?潝甠牘湕愠汙?漬映??慁捎琠敌爬椠潚汈潏杕礠??水??????お???????敁こ????????戠牌?孕??崮???????????佴堠?剦???佃硲楥搭慬瑯楸癐攭?獡瑳敥灤猠?摥畮牥楴湩杣?瑳桹敳?扥業漠獩祮渠琼桩放獁楳獰?潲晧?獬煬畵慳氠敮獩瑧慥瑲椼港?匾ㄠ孁?嵃???栱攵洠楡据慤氠?却捳椠敡湰捰敬???ぴ?????は?????????????ㄠ??戠牥?学??嵩??剴?乯呲卧?佮剩卣吠????嘭???偤偵???偧?????传慦捡畣瑴敯?婩卥??????剁???乩卥?唠前??呲啯??畯浬汯?乹??呮????卯?????卯?卯???吠?????丠?匰″????刺???????圱??嘮?卢卲?剛′???剗???????????剌?匬倠剌??慘獊??扌慖猠敒摔?洠畃汁瑏椠捗漬瀠祇?楏渠瑗敘本爠慌瑉楕漠湊?猠祘獉瑅攠浚?昬漠牌?灕爠潈琮攠楅湦?灥牣潴摩當捥琠楰潲湯?極湣??楯??獯灦攠牫杯楪汩汣甠獡?湩楤朠敩牮??楮?孩?嵥??呥桤攠????即??潲畧物湬慬汵???ど????土???????????????????扬牬?孆??嵴?乲?乥?夬??‰伲唳夬?串????????售??? ̄?椲??渠?癁楍瑉牒漠??椠???剡?卩偤删??慤猠??獦祩獣瑩敥浮?映潭牥?杨敯湤漠浯敦?敦摵楮瑧楡湬朠?潥普??楩??獄灎敁爠来楸汴汲畡獣?湩楯杮攬爠??楩??扢慬獥攠摦?潲渠?牃敒洠潢癡慳扥汤攠?扯楬摥楣牵敬捡瑲椠潭湥慴汨?獤敳汛敊捝琮椠潐湬?浮慴爠歐敡牴??浬摯卧孹?崦???楡潲瑡敮捴桩湮潥氬漠朲礰?愵測搠‵?瀲瀩氺椠攷搴??椱漮挼桢敲派楛猲琵牝礠???ぁ自???????????????????扁牍?孎??嵎??????卉??丬传協?位噁?噏丠??倠?剁?????????协?????删?伬丠住噄?嘠???住啈偓剈?乍??久??佔灁瑃楈浉畂流?捁漠湋搬椠瑈楉潇湁猠?昬漠牏?獁敓汈敉挠瑓椬瘠敋?楉獋潅氠慈琬椠潍湁?潈晉?杁攠湍攮猠?晤牥潮浴?捦潩浣灡汴敩硯?朠敡湮潤洠散獨?扲祡?瑴牥慲湩獺晡潴物浯慮琠楯潦渠????び??慥獳獰潯据楳慩瑢敬摥?牦敯捲漠浢扩楯湳慹瑮楴潨湥?捩汳漠湯楦渠杫孯?嵩??乡畣捩汤攬椠捡??捩楮摤獵?剴敲獩敡慬牬捹栠???はひ????ㄠ?????敵????扲牯?嬠??崾?????乧?佬????副?佹乺佡噥?嘯? ̄?佊啝倮删?乵??乡???楥杮桥汴祩?敳映晡楮捤椠敂湩瑯??剧?区倠剆??愦猠??洠攲搰椱愰琬攠搴?吨?刲?挺氠漹渵椳渭朹?漱昮?杢敲渾敛猲?慝渠摊?挠桃版漬洠潊獅漠浈慗氬?汋潉捍椠?昬爠潋流?捇漠浈灓氮攠硐?杯敭湯潴浥敲猠?楮湧?祮敥慥獲瑩孮?崠??丠畮捡汴敵楲捡??捰楲摯獤?剣整猠敢慩牯捳桹???づ???????????敵????扳爠?孮??嵣??啮?卭?佣乥?????佣啯剮?啥?却????剤????啬?????偯佮啳呛????呎????乡卬传?卲??噵??愠捒略瑰敯?乴???′?唲??匠????匩?删?丷??倶唹?丮?呢?倾?′???乌???剗???????删员??唠??????潂流扉椠湙楐渮朠?晲畡獮楳潣湲?潰晴?捯敮氠汦獡?睴楯瑲栠??剧?卮健剥??慮獧??敯摲椠瑨楩湧杨?晴潨牲?瑵桧敨?捵汴漠湳楴湲条?潮映?汶慯牬杵整??乮??普牤愠杯浲敧湡瑮獩?漠牡?捩潤洠灢汩敯瑰敲?扤慵捣瑴敩牯楮愺氠?朠敲湥潶浩敥獷?楊湝?礠敆慲獯瑮孴?嵥????卮?卂祩湯瑥桮敧瑩楮捥??楩潮汧漠条祮??自ど?????????????有?有??㈠????戸爮?孢??嵛′倸啝丠呂?偎???瘬愠湂?摎敄渠??传乓???????????呈牁慔湕獒晖潅牄浉愠瑐椮漠湅?潩晧?普楥汴慩浣攠湭瑯潤畩獦?晣畡湴杩楯?戺愠獡攠摫?潹渠?桯祯杬爠潦浯祲挠楳湥?扯?慤湡摲?瀠桭汥整潡浢祯捬楩湴?爠数獲楯獤瑵慣湴捩敯?洠慩牮欠敭物獣孲?嵯???敮瑩桳潭摳獛?楝渮??湲穯祮浴潩汥潲最礀???洀猀琀攀爀搀愀洀???氀猀攀瘀椀攀爀?????????????????戀爀?嬀??崀???刀嘀???伀?一?匀倀???刀?一吀匀?伀刀匀吀?????伀伀?匀吀刀??刀??匀吀??????匀??吀?????瘀愀渀?搀攀渀??伀一???????????刀?????????昀昀攀挀琀猀?漀昀?愀?搀攀昀攀挀琀椀瘀攀??刀???瀀愀琀栀眀愀礀?漀渀?最爀漀眀琀栀?愀渀搀?栀攀琀攀爀漀氀漀最漀甀猀?瀀爀漀琀攀椀渀?瀀爀漀搀甀挀琀椀漀渀?椀渀??椀??猀瀀攀爀最椀氀氀甀猀?渀椀最攀爀??椀?嬀?崀???瀀瀀氀椀攀搀??椀挀爀漀戀椀漀氀漀最礀?愀渀搀??椀漀琀攀挀栀渀漀氀漀最礀??? ???????????????????
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHAO Yuxin, TAN Yuyang, GAO Ying, ZHU Baisong, ZHANG Mingyi, CAO Wei. Transformation-associated recombination cloning and integrated expression of biosynthetic gene cluster for kojic acid in Aspergillus niger[J]. Microbiology China, 2024, 51(10): 4028-4042

Copy
Share
Article Metrics
  • Abstract:90
  • PDF: 255
  • HTML: 129
  • Cited by: 0
History
  • Received:January 31,2024
  • Adopted:April 19,2024
  • Online: October 08,2024
  • Published: October 20,2024
Article QR Code