[Background] Iron is a microelement essential for the growth and metabolism of microorganisms, playing a role in vital physiological activities like respiration, DNA precursor synthesis, gene regulation, and response to oxidative stress. Studies have confirmed the tolerance of Streptomyces flavus TRM45540, an actinomycete strain isolated from Lop Nur in Xinjiang, to ferric ions. It is of great significance to elucidate the response mechanism of S. flavus TRM45540 to iron stress. [Objective] To reveal the iron tolerance mechanism of S. flavus TRM45540. [Methods] S. flavus TRM45540 was cultured in the ISP4 liquid media supplemented with different levels of ferrous sulfate. Transcriptome sequencing was employed to explore the response mechanism to iron. Additionally, scanning electron microscopy and energy spectrum analysis were employed to observe changes in mycelial surface morphology as well as elemental species and content under ferric ion stress. [Results] The supplementation of ferrous sulfate at low (1-500 mg/L) and high (2 500-4 500 mg/L) levels had negative effects on the growth of S. flavus TRM45540. However, supplementing ferrous sulfate at 500-2 500 mg/L promoted the biomass accumulation of S. flavus TRM45540. With the increase in the supplementing level of ferrous sulfate, a large amount of extracellular polymers substances (EPSs) were generated outside the mycelia of S. flavus TRM45540. The energy spectrum analysis showed increases in the oxygen and iron content and a decrease in the nitrogen content of EPS, suggesting a polysaccharide composition. The transcriptome analysis showed that differentially expressed genes post ferric ion stress were associated with multiple metabolic pathways including the ABC transporter system, two component system, ferric ion transport, amino acid metabolism, glutathione expression, and porphyrin metabolism. [Conclusion] The ferric ion stress induced the secretion and export of biomolecules to the cell surface of S. flavus TRM45540, leading to the formation of polysaccharide-based EPS. The EPS was complexed with a large amount of ferric ions on the bacterial cell surface, thereby impeding the influx of ferric ions. Additionally, the activation of the two component system triggered a cascade of responses to ferric ion stress. This included upregulation of acidic amino acids, enhanced synthesis of porphyrins binding to ferric ions, and increased biosynthesis of cysteine and glutathione involved in ferric ion removal. These pathways coordinated to reduce the cellular damage caused by high ferric ion levels.
ZHANG Wei, YANG Shuai, SANG Haizhou, WAN Chuanxing, ZHANG Lili. Iron tolerance mechanism of Streptomyces flavus[J]. Microbiology China, 2024, 51(10): 4004-4017
CopyMicrobiology China ® 2025 All Rights Reserved