Bibliometric analysis of machine learning in microbial ecology
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [89]
  • | | | |
  • Comments
    Abstract:

    [Background] With the rapid development of new types of stations and sequencing methods, the data in microbial ecology has experienced explosive growth, providing rich resources for revealing the role of microorganisms in global ecosystems. However, the processing and analysis of these large datasets pose challenges to conventional methods. Machine learning, with unique advantages in handling big data, has become a key technology to address these challenges. [Objective] This study comprehensively explored the developmental trends, current status, and hotspots in the application of machine learning in microbial ecology through bibliometric analysis, aiming to guide the future integration of machine learning with the research of microbial ecology. [Methods] The relevant articles published between 1991 and 2023 in the Web of Science (WOS) Core Collection were collected and analyzed. CiteSpace was used to visualize the evolution of the number of publications, international collaboration, and interdisciplinary status. Carrot2 was employed to mine textual data and build knowledge maps. [Results] The application of machine learning in the research of microbial ecology has undergone two distinct phases: stable growth followed by explosive growth, with 2018 marking a turning point. This research field has gained increasing attention, which led to continuous growth in the research output. The integration of machine learning with other disciplines, especially chemistry, physics, environmental sciences, and computer science, has become increasingly tight-knit, providing new perspectives for the advancement of scientific research. The application of machine learning in microbial ecology is extensive. The early studies primarily focused on sequence recognition and species identification. However, as deep learning and computer vision technologies have kept advancing since 2018, the research focus shifted towards predicting complex systems. The comparison of keywords between the two phases highlighted the evolution of machine learning in microbial ecology from basic data processing and analysis to complex and advanced prediction models. [Conclusion] According to the results of bibliometric analysis and considering challenges like data scarcity, difficulties in model selection, and poor interpretability in applying machine learning in microbial ecology, we suggest that international collaboration, data sharing, and interdisciplinary exchange should be emphasized in the future to promote the development of interpretable machine learning.

    Reference
    [1] HAZARD C, GOSLING P, van der GAST CJ, MITCHELL DT, DOOHAN FM, BENDING GD. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale[J]. The ISME Journal, 2013, 7(3): 498-508.
    [2] RAES J. Crowdsourcing earth’s microbes[J]. Nature, 2017, 551: 446-447.
    [3] SONG LY. Toward understanding microbial ecology to restore a degraded ecosystem[J]. International Journal of Environmental Research and Public Health, 2023, 20(5): 4647.
    [4] GOLDMAN AD, KAÇAR B. Very early evolution from the perspective of microbial ecology[J]. Environmental Microbiology, 2023, 25(1): 5-10.
    [5] VOLMER J, SCHMID A, BÜHLER B. Guiding bioprocess design by microbial ecology[J]. Current Opinion in Microbiology, 2015, 25: 25-32.
    [6] LEMKE M, DeSALLE R. The role of microbial ecology in restoration ecology in the age of genomics: a summary of the microbial ecology special issue[J]. Microbial Ecology, 2023, 85(3): 1136-1141.
    [7] GALLOWAY-PEÑA J, HANSON B. Tools for analysis of the microbiome[J]. Digestive Diseases and Sciences, 2020, 65(3): 674-685.
    [8] KELLER M, SCHIMEL DS, HARGROVE WW, HOFFMAN FM. A continental strategy for the National Ecological Observatory Network[J]. Frontiers in Ecology and the Environment, 2008, 6(5): 282-284.
    [9] HANSON PC, WEATHERS KC, DUGAN HA, GRIES C. The global lake ecological observatory network[J]. Ecological Informatics: Data Management and Knowledge Discovery, 2018: 415-433.
    [10] COLLINS SL, BETTENCOURT LM, HAGBERG A, BROWN RF, MOORE DI, BONITO G, DELIN KA, JACKSON SP, JOHNSON DW, BURLEIGH SC, WOODROW RR, McAULEY JM. New opportunities in ecological sensing using wireless sensor networks[J]. Frontiers in Ecology and the Environment, 2006, 4(8): 402-407.
    [11] PORTER JH, NAGY E, KRATZ TK, HANSON P, COLLINS SL, ARZBERGER P. New eyes on the world: advanced sensors for ecology[J]. BioScience, 2009, 59(5): 385-397.
    [12] KELLING S, HOCHACHKA WM, FINK D, RIEDEWALD M, CARUANA R, BALLARD G, HOOKER G. Data-intensive science: a new paradigm for biodiversity studies[J]. BioScience, 2009, 59(7): 613-620.
    [13] JORDAN MI, MITCHELL TM. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260.
    [14] YU T, SU SX, HU J, ZHANG J, XIANYU YL. A new strategy for microbial taxonomic identification through micro-biosynthetic gold nanoparticles and machine learning[J]. Advanced Materials, 2022, 34(11): e2109365.
    [15] DUTTA A, GOLDMAN T, KEATING J, BURKE E, WILLIAMSON N, DIRMEIER R, BOWMAN JS. Machine learning predicts biogeochemistry from microbial community structure in a complex model system[J]. Microbiology Spectrum, 2022, 10(1): e0190921.
    [16] KE MJ, XU NH, ZHANG ZY, QIU DY, KANG J, LU T, WANG TZ, PEIJNENBURG WJGM, SUN LW, HU BL, QIAN HF. Development of a machine-learning model to identify the impacts of pesticides characteristics on soil microbial communities from high-throughput sequencing data[J]. Environmental Microbiology, 2022, 24(11): 5561-5573.
    [17] OYETUNDE T, LIU D, MARTIN HG, TANG YJ. Machine learning framework for assessment of microbial factory performance[J]. PLoS One, 2019, 14(1): e0210558.
    [18] WANG XW, SUN Z, JIA HJ, MICHEL-MATA S, ANGULO MT, DAI L, HE XS, WEISS ST, LIU YY. Identifying keystone species in microbial communities using deep learning[J]. Nature Ecology & Evolution, 2024, 8: 22-31.
    [19] MEI R, KIM J, WILSON FP, BOCHER BTW, LIU WT. Coupling growth kinetics modeling with machine learning reveals microbial immigration impacts and identifies key environmental parameters in a biological wastewater treatment process[J]. Microbiome, 2019, 7(1): 65.
    [20] PACHECO AR, SEGRÈ D. An evolutionary algorithm for designing microbial communities via environmental modification[J]. Journal of the Royal Society Interface, 2021, 18(179): 20210348.
    [21] CHEN CM. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
    [22] CHEN CM, DUBIN R, KIM MC. Emerging trends and new developments in regenerative medicine: a scientometric update (2000—2014)[J]. Expert Opinion on Biological Therapy, 2014, 14(9): 1295-1317.
    [23] CHEN CM, LEYDESDORFF L. Patterns of connections and movements in dual-map overlays: a new method of publication portfolio analysis[J]. Journal of the Association for Information Science and Technology, 2014, 65(2): 334-351.
    [24] 李杰, 陈超美. CiteSpace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2016. LI J, CHEN CM. CiteSpace: Text Mining and Visualization in Scientific Literature[M]. Beijing: Capital University of Economics & Business Press, 2016(in Chinese).
    [25] PEARL J, MACKENZIE D. The Book of Why: the New Science of Cause and Effect[M]. New York: Basic Books, 2018.
    [26] NOVAC OC, CHIRODEA MC, NOVAC CM, BIZON N, OPROESCU M, STAN OP, GORDAN CE. Analysis of the application efficiency of TensorFlow and PyTorch in convolutional neural network[J]. Sensors, 2022, 22(22): 8872.
    [27] 叶靓俏, 尹彩春, 赵文武. 基于文献计量分析的联合国可持续发展目标研究[J]. 生态学报, 2023, 43(24): 10480-10489. YE LQ, YI CC, ZHAO WW. Bibliometric analysis of research on UN Sustainable development goals based on Web of Science [J]. Acta Ecologica Sinica, 2023, 43(24): 10480-10489(in Chinese).
    [28] RICHARDS TA, MASSANA R, PAGLIARA S, HALL N. Single cell ecology[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1786): 20190076.
    [29] 辛雨菡, 崔丽. 单细胞稳定同位素标记技术在固氮微生物中的应用研究[J]. 微生物学报, 2020, 60(9): 1772-1783. XIN YH, CUI L. Application of single-cell stable isotope probing approach to investigate N2-fixing microorganisms[J]. Acta Microbiologica Sinica, 2020, 60(9): 1772-1783(in Chinese).
    [30] MA Q, XU D. Deep learning shapes single-cell data analysis[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 303-304.
    [31] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, MICHEL V, THIRION B, GRISEL O, BLONDEL M, PRETTENHOFER P, WEISS R, DUBOURG V, VANDERPLAS J, PASSOS A, COURNAPEAU D, BRUCHER M, PERROT M, DUCHESNAY É. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12(85): 2825-2830.
    [32] BOLYEN E, RIDEOUT JR, DILLON MR, BOKULICH NA, ABNET CC, AL-GHALITH GA, ALEXANDER H, ALM EJ, ARUMUGAM M, ASNICAR F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature biotechnology, 2019, 37(8): 852-857.
    [33] HE K, ZHANG X, REN S, SUN J. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016: 770-778.
    [34] CALLAHAN BJ, MCMURDIE PJ, ROSEN MJ, HAN AW, JOHNSON AJA, HOLMES SP. DADA2: high-resolution sample inference from illumina amplicon data[J]. Nature Methods, 2016, 13(7): 581-583.
    [35] OZTURK T, TALO M, YILDIRIM EA, BALOGLU UB, YILDIRIM O, RAJENDRA ACHARYA U. Automated detection of COVID-19 cases using deep neural networks with X-ray images[J]. Computers in Biology and Medicine, 2020, 121: 103792.
    [36] APOSTOLOPOULOS ID, MPESIANA TA. COVID-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks[J]. Physical and Engineering Sciences in Medicine, 2020, 43(2): 635-640.
    [37] SIMONYAN K. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv: 1409.1556, 2014
    [38] CHANG CC, LIN CJ. LIBSVM: a library for support vector machines[J]. ACM transactions on intelligent systems and technology (TIST), 2011, 2(3): 1-27.
    [39] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, MCDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
    [40] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery, 2016: 785-794.
    [41] ABRAHAM A, PEDREGOSA F, EICKENBERG M, GERVAIS P, MUELLER A, KOSSAIFI J, GRAMFORT A, THIRION B, VAROQUAUX G. Machine learning for neuroimaging with scikit-learn[J]. Frontiers in Neuroinformatics, 2014, 8: 14.
    [42] CAPANEMA CGS, de OLIVEIRA GS, SILVA FA, SILVA TRMB, LOUREIRO AAF. Combining recurrent and Graph Neural Networks to predict the next place’s category[J]. Ad Hoc Networks, 2023, 138: 103016.
    [43] DENG L, ZHU F, HE Y, MENG FW. Prediction of post-translational modification cross-talk and mutation within proteins via imbalanced learning[J]. Expert Systems with Applications, 2023, 211: 118593.
    [44] ZHANG J, ZHOU PF, ZHENG YJ, WU HY. Predicting influenza with pandemic-awareness via dynamic virtual graph significance networks[J]. Computers in Biology and Medicine, 2023, 158: 106807.
    [45] DILLON MR, BOLYEN E, ADAMOV A, BELK A, BORSOM E, BURCHAM Z, DEBELIUS JW, DEEL H, EMMONS A, ESTAKI M, HERMAN C, KEEFE CR, MORTON JT, OLIVEIRA RRM, SANCHEZ A, SIMARD A, VÁZQUEZ-BAEZA Y, ZIEMSKI M, MIWA HE, KERERE TA, et al. Experiences and lessons learned from two virtual, hands-on microbiome bioinformatics workshops[J]. PLoS Computational Biology, 2021, 17(6): e1009056.
    [46] KNYAZEV S, CHHUGANI K, SARWAL V, AYYALA R, SINGH H, KARTHIKEYAN S, DESHPANDE D, BAYKAL PI, COMAROVA Z, LU A, POROZOV Y, VASYLYEVA TI, WERTHEIM JO, TIERNEY BT, CHIU CY, SUN R, WU AP, ABEDALTHAGAFI MS, PAK VM, NAGARAJ SH, et al. Unlocking capacities of genomics for the COVID-19 response and future pandemics[J]. Nature Methods, 2022, 19: 374-380.
    [47] ELDRED LE, THORN RG, SMITH DR. Simple matching using QIIME 2 and RDP reveals misidentified sequences and an underrepresentation of fungi in reference datasets[J]. Frontiers in Genetics, 2021, 12: 768473.
    [48] REUTER JA, SPACEK DV, SNYDER MP. High-throughput sequencing technologies[J]. Molecular Cell, 2015, 58(4): 586-597.
    [49] SCHLOSS JA, GIBBS RA, MAKHIJANI VB, MARZIALI A. Cultivating DNA sequencing technology after the human genome project[J]. Annual Review of Genomics and Human Genetics, 2020, 21: 117-138.
    [50] THOMPSON LR, SANDERS JG, McDONALD D, AMIR A, LADAU J, LOCEY KJ, PRILL RJ, TRIPATHI A, GIBBONS SM, ACKERMANN G, NAVAS-MOLINA JA, JANSSEN S, KOPYLOVA E, VÁZQUEZ-BAEZA Y, GONZÁLEZ A, MORTON JT, MIRARAB S, XU ZZ, JIANG LJ, HAROON MF, et al. A communal catalogue reveals Earth’s multiscale microbial diversity[J]. Nature, 2017, 551(7681): 457-463.
    [51] GOODSWEN SJ, BARRATT JLN, KENNEDY PJ, KAUFER A, CALARCO L, ELLIS JT. Machine learning and applications in microbiology[J]. FEMS Microbiology Reviews, 2021, 45(5): fuab015.
    [52] WANG G, MULLIGAN MJ. Comparative sequence analysis and predictions for the envelope glycoproteins of foamy viruses[J]. The Journal of General Virology, 1999, 80( Pt 1): 245-254.
    [53] KALATE RN, TAMBE SS, KULKARNI BD. Artificial neural networks for prediction of mycobacterial promoter sequences[J]. Computational Biology and Chemistry, 2003, 27(6): 555-564.
    [54] DOLLHOPF SL, HASHSHAM SA, TIEDJE JM. Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence[J]. Microbial Ecology, 2001, 42(4): 495-505.
    [55] HABIB AR, LO NC. Predicting COVID-19 outcomes[J]. BMJ, 2022, 376: o354.
    [56] ARDABILI S, MOSAVI A, GHAMISI P, FERDINAND F, VARKONYI-KOCZY A, REUTER U, RABCZUK T, ATKINSON P. COVID-19 outbreak prediction with machine learning[J]. Algorithms, 2020, 13(10): 249.
    [57] NASUTION H, KHAIRANI N, AHYANINGSIH F, ALAMSYAH F. Mathematical modeling of the spread of corona virus disease 19(COVID-19) with vaccines[C]// The 8th Annual Interational Seminal on Trends in Science and Science Education (AISTSSE) 2021, AIP Conference Proceedings. Medan, Indonesia. AIP Publishing, 2022, 2659(1): 110009.
    [58] HE S, TANG SY, RONG LB. A discrete stochastic model of the COVID-19 outbreak: forecast and control[J]. Mathematical Biosciences and Engineering: MBE, 2020, 17(4): 2792-2804.
    [59] ALANAZI SA, KAMRUZZAMAN MM, ALRUWAILI M, ALSHAMMARI N, ALQAHTANI SA, KARIME A. Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care[J]. Journal of Healthcare Engineering, 2020, 2020: 8857346.
    [60] LAMMEL DR, BARTH G, OVASKAINEN O, CRUZ LM, ZANATTA JA, RYO M, de SOUZA EM, PEDROSA FO. Direct and indirect effects of a pH gradient bring insights into the mechanisms driving prokaryotic community structures[J]. Microbiome, 2018, 6(1): 106.
    [61] FEESER KL, van HORN DJ, BUELOW HN, COLMAN DR, McHUGH TA, OKIE JG, SCHWARTZ E, TAKACS-VESBACH CD. Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert[J]. Frontiers in Microbiology, 2018, 9: 1928.
    [62] LUO GW, RENSING C, CHEN H, LIU MQ, WANG M, GUO SW, LING N, SHEN QR. Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management[J]. Functional Ecology, 2018, 32(4): 1103-1116.
    [63] THANGAVEL R, KANCHIKERIMATH M, SUDHARSANAM A, AYYANADAR A, KARUNANITHI R, DESHMUKH NA, VANAO NS. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: impact of land use change in subtropical India (Meghalaya)[J]. Ecological Indicators, 2018, 93: 129-141.
    [64] ZHANG H, WU PB, FAN MM, ZHENG SY, WU JT, YANG XH, ZHANG M, YIN AJ, GAO C. Dynamics and driving factors of the organic carbon fractions in agricultural land reclaimed from coastal wetlands in Eastern China[J]. Ecological Indicators, 2018, 89: 639-647.
    [65] JIANG YJ, ZHOU H, CHEN LJ, YUAN Y, FANG H, LUAN L, CHEN Y, WANG XY, LIU MQ, LI HX, PENG XH, SUN B. Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates[J]. Frontiers in Microbiology, 2018, 9: 2803.
    [66] DiMUCCI D, KON M, SEGRÈ D. Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks[J]. mSystems, 2018, 3(5): e00181-18.
    [67] DAMASO N, MENDEL J, MENDOZA M, von WETTBERG EJ, NARASIMHAN G, MILLS D. Bioinformatics approach to assess the biogeographical patterns of soil communities: the utility for soil provenance[J]. Journal of Forensic Sciences, 2018, 63(4): 1033-1042.
    [68] RAMIREZ KS, KNIGHT CG, de HOLLANDER M, BREARLEY FQ, CONSTANTINIDES B, COTTON A, CREER S, CROWTHER TW, DAVISON J, DELGADO-BAQUERIZO M, DORREPAAL E, ELLIOTT DR, FOX G, GRIFFITHS RI, HALE C, HARTMAN K, HOULDEN A, JONES DL, KRAB EJ, MAESTRE FT, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils[J]. Nature Microbiology, 2018, 3: 189-196.
    [69] KNIGHTS D, COSTELLO EK, KNIGHT R. Supervised classification of human microbiota[J]. FEMS Microbiology Reviews, 2011, 35(2): 343-359.
    [70] CHEN YL, KOU D, LI F, DING JZ, YANG GB, FANG K, YANG YH. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions[J]. Plant and Soil, 2019, 434(1): 453-466.
    [71] PEI YT, HUANG YP, ZOU Q, ZHANG XY, WANG S. Effects of image degradation and degradation removal to CNN-based image classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1239-1253.
    [72] KOSOV S, SHIRAHAMA K, LI C, GRZEGORZEK M. Environmental microorganism classification using conditional random fields and deep convolutional neural networks[J]. Pattern Recognition, 2018, 77: 248-261.
    [73] TAHIR MW, ZAIDI NA, RAO AA, BLANK R, VELLEKOOP MJ, LANG W. A fungus spores dataset and a convolutional neural network based approach for fungus detection[J]. IEEE Transactions on NanoBioscience, 2018, 17(3): 281-290.
    [74] CHEN RTQ, RUBANOVA Y, BETTENCOURT J, DUVENAUD D. Neural ordinary differential equations[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada. ACM, 2018: 6572-6583.
    [75] MICHEL-MATA S, WANG XW, LIU YY, ANGULO MT. Predicting microbiome compositions from species assemblages through deep learning[J]. iMeta, 2022, 1(1): e3.
    [76] WANG T, WANG XW, LEE-SARWAR KA, LITONJUA AA, WEISS ST, SUN YZ, MASLOV S, LIU YY. Predicting metabolomic profiles from microbial composition through neural ordinary differential equations[J]. Nature Machine Intelligence, 2023, 5: 284-293.
    [77] CHING T, HIMMELSTEIN DS, BEAULIEU-JONES BK, KALININ AA, DO BT, WAY GP, FERRERO E, AGAPOW PM, ZIETZ M, HOFFMAN MM, XIE W, ROSEN GL, LENGERICH BJ, ISRAELI J, LANCHANTIN J, WOLOSZYNEK S, CARPENTER AE, SHRIKUMAR A, XU JB, COFER EM, et al. Opportunities and obstacles for deep learning in biology and medicine[J]. Journal of the Royal Society, Interface, 2018, 15(141): 20170387.
    [78] ADADI A. A survey on data‐efficient algorithms in big data era[J]. Journal of Big Data, 2021, 8(1): 24.
    [79] CHRISTIN S, HERVET É, LECOMTE N. Applications for deep learning in ecology[J]. Methods in Ecology and Evolution, 2019, 10(10): 1632-1644.
    [80] LO C, MARCULESCU R. MetaNN: accurate classification of host phenotypes from metagenomic data using neural networks[J]. BMC Bioinformatics, 2019, 20(Suppl 12): 314.
    [81] SAYYARI E, KAWAS B, MIRARAB S. TADA: phylogenetic augmentation of microbiome samples enhances phenotype classification[J]. Bioinformatics, 2019, 35(14): i31-i40.
    [82] FRITZ A, HOFMANN P, MAJDA S, DAHMS E, DRÖGE J, FIEDLER J, LESKER TR, BELMANN P, DeMAERE MZ, DARLING AE, SCZYRBA A, BREMGES A, McHARDY AC. CAMISIM: simulating metagenomes and microbial communities[J]. Microbiome, 2019, 7(1): 17.
    [83] DOMINGOS P. A few useful things to know about machine learning[J]. Communications of the ACM, 2012, 55(10): 78-87.
    [84] LUCAS TCD. A translucent box: interpretable machine learning in ecology[J]. Ecological Monographs, 2020, 90(4): e01422.
    [85] RASMUSSEN CE. Gaussian Processes in Machine Learning[M]//Advanced Lectures on Machine Learning. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 63-71.
    [86] LYDDON S, WALKER S, HOLMES C. Nonparametric learning from Bayesian models with randomized objective functions[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal, Canada. ACM, 2018: 2075-2085.
    [87] LE V, QUINN TP, TRAN T, VENKATESH S. Deep in the bowel: highly interpretable neural encoder-decoder networks predict gut metabolites from gut microbiome[J]. BMC Genomics, 2020, 21(Suppl 4): 256.
    [88] GUIDOTTI R, MONREALE A, RUGGIERI S, TURINI F, GIANNOTTI F, PEDRESCHI D. A survey of methods for explaining black box models[J]. ACM Computing Surveys, 2018, 51(5): 93.
    [89] HERNÁNDEZ MEDINA R, KUTUZOVA S, NIELSEN KN, JOHANSEN J, HANSEN LH, NIELSEN M, RASMUSSEN S. Machine learning and deep learning applications in microbiome research[J]. ISME Communications, 2022, 2: 98.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIN Shanshan, LI Zhe, YANG Liu, LU Lunhui. Bibliometric analysis of machine learning in microbial ecology[J]. Microbiology China, 2024, 51(9): 3673-3689

Copy
Share
Article Metrics
  • Abstract:111
  • PDF: 297
  • HTML: 224
  • Cited by: 0
History
  • Received:December 26,2023
  • Adopted:February 04,2024
  • Online: September 19,2024
  • Published: September 20,2024
Article QR Code