Fermentation characteristics and safety evaluation of high-yield gamma-aminobutyric acid-producing Lactobacillus brevis D17 on hydrolyzed oat milk
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [60]
  • | | | |
  • Comments
    Abstract:

    [Background] It is of great significance to evaluate the fermentation characteristics and safety of Lactobacillus brevis D17, a high gamma-aminobutyric acid (GABA)-producing bacterium from fermented grains for the production of Chinese liquor. [Objective] To investigate the fermentation characteristics and evaluate the safety of L.brevis D17, laying a foundation for further assessment of probiotic properties. [Methods] The MRS medium and hydrolyzed oat milk were used to study the fermentation characteristics of strain D17. The whole genome sequence of D17 was compared with the virulence factor database (VFDB) and the comprehensive antibiotic resistance database (CARD) to assess the presence of virulence genes and antibiotic resistance genes. The antibiotic susceptibility profile of L.brevis D17 was established by antibiotic susceptibility tests. The toxicological test in mice was carried out to assess the in vivo safety of L.brevis D17. [Results] L.brevis D17 showcased good fermentation performance on oat milk, with the lactate production reaching 82.5% of that in the MRS medium. Moreover, it produced 480 mg/L GABA from the glutamate in oat milk. Additionally, L.brevis D17 improved the flavor profile of oat milk. L.brevis D17 did not carry virulence genes or antibiotic resistance genes. Despite inherent antibiotic resistance, D17 strain had no risk of resistance transfer. L.brevis D17 colonized the mouse intestine without causing any disease or death. Moreover, it exerted positive effects on serum indicators and gut microbiota in mice. [Conclusion] L.brevis D17 showcased strong potential for fermentation of plant-derived substrates and was confirmed to be safe, demonstrating significant probiotic properties.

    Reference
    [1] RAJ T, CHANDRASEKHAR K, KUMAR AN, KIM SH. Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries[J]. Systems Microbiology and Biomanufacturing, 2022, 2(1): 14-40.
    [2] DORDEVIĆ D, JANČÍKOVÁ S, VÍTĚZOVÁ M, KUSHKEVYCH I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes[J]. Journal of Advanced Research, 2021, 27: 55-69.
    [3] HORLACHER N, OEY I, AGYEI D. Learning from tradition: health-promoting potential of traditional lactic acid fermentation to drive innovation in fermented plant-based dairy alternatives[J]. Fermentation, 2023, 9(5): 452.
    [4] KACZMARSKA KT, CHANDRA-HIOE MV, FRANK D, ARCOT J. Aroma characteristics of lupin and soybean after germination and effect of fermentation on lupin aroma[J]. LWT- Food Science and Technology, 2018, 87: 225-233.
    [5] S VALLABHA V, TIKU PK. Antihypertensive peptides derived from soy protein by fermentation[J]. International Journal of Peptide Research and Therapeutics, 2014, 20(2): 161-168.
    [6] ALBUQUERQUE MAC, BEDANI R, LEBLANC JG, SAAD SMI. Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk[J]. International Journal of Food Microbiology, 2017, 261: 35-41.
    [7] ZHANG J, CAI DY, YANG M, HAO YJ, ZHU YH, CHEN ZX, AZIZ T, SARWAR A, YANG ZN. Screening of folate-producing lactic acid bacteria and modulatory effects of folate-biofortified yogurt on gut dysbacteriosis of folate-deficient rats[J]. Food & Function, 2020, 11(7): 6308-6318.
    [8] DJORGBENOO R, HU JJ, HU CL, SANG SM. Fermented oats as a novel functional food[J]. Nutrients, 2023, 15(16): 3521.
    [9] YU Q, QIAN JQ, GUO YH, QIAN H, YAO WR, CHENG YL. Applicable strains, processing techniques and health benefits of fermented oat beverages: a review[J]. Foods, 2023, 12(8): 1708.
    [10] SATOMI S, WAKI N, ARAKAWA C, FUJISAWA K, SUZUKI S, SUGANUMA H. Effects of heat-killed Levilactobacillus brevis KB290 in combination with β-carotene on influenza virus infection in healthy adults: a randomized controlled trial[J]. Nutrients, 2021, 13(9): 3039.
    [11] COLAUTTI A, ARNOLDI M, COMI G, IACUMIN L. Antibiotic resistance and virulence factors in lactobacilli: Something to carefully consider[J]. Food Microbiology, 2022, 103: 103934.
    [12] EUROPEAN FOOD SAFETY AUTHORITY (EFSA). Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA: Opinion of the Scientific Committee[J]. EFSA Journal, 2007, 5(12): 587.
    [13] ANISIMOVA EA, YARULLINA DR. Antibiotic resistance and the mobility of its genetic determinants in Lactobacillus fermentum[J]. Molecular Genetics, Microbiology and Virology, 2020, 35(4): 202-209.
    [14] KOTHARI D, PATEL S, KIM SK. Probiotic supplements might not be universally-effective and safe: a review[J]. Biomedicine & Pharmacotherapy, 2019, 111: 537-547.
    [15] CANNON JP, LEE TA, BOLANOS JT, DANZIGER LH. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases[J]. European Journal of Clinical Microbiology and Infectious Diseases, 2005, 24(1): 31-40.
    [16] NORDSTRÖM EA, TEIXEIRA C, MONTELIUS C, JEPPSSON B, LARSSON N. Lactiplantibacillus plantarum 299v (LP299V®): three decades of research[J]. Beneficial Microbes, 2021, 12(5): 441-465.
    [17] YAKABE T, MOORE EL, YOKOTA S, SUI H, NOBUTA Y, FUKAO M, PALMER H, YAJIMA N. Safety assessment of Lactobacillus brevis KB290 as a probiotic strain[J]. Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2009, 47(10): 2450-2453.
    [18] LAROUTE V, AUBRY N, AUDONNET M, MERCIER-BONIN M, DAVERAN-MINGOT ML, COCAIGN-BOUSQUET M. Natural diversity of lactococci in γ-aminobutyric acid (GABA) production and genetic and phenotypic determinants[J]. Microbial Cell Factories, 2023, 22(1): 178.
    [19] O’LEARY OF, FELICE D, GALIMBERTI S, SAVIGNAC HM, BRAVO JA, CROWLEY T, EL YACOUBI M, VAUGEOIS JM, GASSMANN M, BETTLER B, DINAN TG, CRYAN JF. GABAB(1) receptor subunit isoforms differentially regulate stress resilience[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(42): 15232-15237.
    [20] HWANG I, JO K, SHIN KC, KIM JI, JI Y, PARK YJ, PARK J, JEON YG, KA S, SUK S, NOH HL, CHOE SS, ALFADDA AA, KIM JK, KIM S, KIM JB. GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(24): 11936-11945.
    [21] YOGESWARA IBA, MANEERAT S, HALTRICH D. Glutamate decarboxylase from lactic acid bacteria-a key enzyme in GABA synthesis[J]. Microorganisms, 2020, 8(12): 1923.
    [22] 任聪, 杜海, 徐岩. 中国传统发酵食品微生物组研究进展[J]. 微生物学报, 2017, 57(6): 885-898. REN C, DU H, XU Y. Advances in microbiome study of traditional Chinese fermented foods[J]. Acta Microbiologica Sinica, 2017, 57(6): 885-898 (in Chinese).
    [23] GONG LC, REN C, XU Y. Deciphering the crucial roles of transcriptional regulator GadR on gamma-aminobutyric acid production and acid resistance in Lactobacillus brevis[J]. Microbial Cell Factories, 2019, 18(1): 108.
    [24] LIU SQ, SKINNER-NEMEC KA, LEATHERS TD. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(2): 75-81.
    [25] REA K, CREMERS TIFH, WESTERINK BHC. HPLC conditions are critical for the detection of GABA by microdialysis[J]. Journal of Neurochemistry, 2005, 94(3): 672-679.
    [26] HAO MJ, WU D, XU Y, TAO XM, LI N, YU XW. A novel endo-polygalacturonase from Penicillium rolfsii with prebiotics production potential: cloning, characterization and application[J]. Foods, 2022, 11(21): 3469.
    [27] JI M, DU H, XU Y. Structural and metabolic performance of p-cresol producing microbiota in different carbon sources[J]. Food Research International, 2020, 132: 109049.
    [28] 靳妲, 于上富, 李柏良, 李娜, 闫芬芬, 霍贵成. 植物乳杆菌KLDS 1.0386对C57BL/6小鼠胆固醇代谢的影响[J]. 食品工业科技, 2017, 38(23): 275-279, 283. JIN D, YU SF, LI BL, LI N, YAN FF, HUO GC. Effect of Lactobacillus plantarum KLDS 1.0386 on the cholesterol metabolism in C57BL/6 mice[J]. Science and Technology of Food Industry, 2017, 38(23): 275-279, 283 (in Chinese).
    [29] HYRONIMUS B, LE MARREC C, SASSI AH, DESCHAMPS A. Acid and bile tolerance of spore-forming lactic acid bacteria[J]. International Journal of Food Microbiology, 2000, 61(2/3): 193-197.
    [30] 中国食品科学技术学会. 食品用益生菌通则: T/CIFST 009—2022[S]. 北京: 中国食品科学技术学会, 2022. Chinese Institute of Food Science and Technology. General standard of probiotics for food use: T/CIFST 009—2022[S]. Beijing: Chinese Institute of Food Science and Technology, 2022 (in Chinese).
    [31] European Food Safety Authority (EFSA). EFSA statement on the requirements for whole genome sequence analysis of microorganisms intentionally used in the food chain[J]. EFSA Journal, 2021, 19(7): e06506.
    [32] Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing: twenty-eighth informational supplement: M100-S28[S]. USA: Clinical and Laboratory Standards Institute, 2018.
    [33] Organisation for Economic Co-operation and Development. Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents[M]. Paris: OECD Publishing, 2008.
    [34] XU HY, HUANG WQ, HOU QC, KWOK LY, SUN ZH, MA HM, ZHAO FY, LEE YK, ZHANG HP. The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows[J]. Science Bulletin, 2017, 62(11): 767-774.
    [35] XU HY, HUANG WQ, HOU QC, KWOK LY, LAGA WR, WANG YJ, MA HM, SUN ZH, ZHANG HP. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota[J]. Frontiers in Immunology, 2019, 10: 666.
    [36] 张会敏, 孟雅静, 王艳丽, 李安军, 刘国英, 袁志强, 张严, 邢新会. 新老窖池黄水的差异性及静置培养对其影响[J]. 食品科学, 2020, 41(2): 215-222. ZHANG HM, MENG YJ, WANG YL, LI AJ, LIU GY, YUAN ZQ, ZHANG Y, XING XH. Differences between huangshui from old and young mud pits of Chinese strong-flavor liquor and effect of static culture on it[J]. Food Science, 2020, 41(2): 215-222 (in Chinese).
    [37] BLAGDEN TD, GILLILAND SE. Reduction of levels of volatile components associated with the “beany” flavor in soymilk by lactobacilli and streptococci[J]. Journal of Food Science, 2006, 70(3): M186-M189.
    [38] WANG J, WEI XY, FAN MT. Assessment of antibiotic susceptibility within lactic acid bacteria and coagulase-negative staphylococci isolated from Hunan smoked pork, a naturally fermented meat product in China[J]. Journal of Food Science, 2018, 83(6): 1707-1715.
    [39] 黄晓棠, 姚妞妞, 周璇, 郭润芳, 于宏伟. 5株发酵食品源乳酸菌的抗药性分析[J]. 食品工业科技, 2020, 41(8): 111-116. HUANG XT, YAO NN, ZHOU X, GUO RF, YU HW. Antimicrobial resistance analysis of 5 lactic acid bacteria isolated from fermented foods[J]. Science and Technology of Food Industry, 2020, 41(8): 111-116 (in Chinese).
    [40] ABRIOUEL H, DEL CARMEN CASADO MUÑOZ M, LERMA LL, MONTORO BP, BOCKELMANN W, PICHNER R, KABISCH J, CHO GS, FRANZ CMAP, GÁLVEZ A, BENOMAR N. New insights in antibiotic resistance of Lactobacillus species from fermented foods[J]. Food Research International, 2015, 78: 465-481.
    [41] DAS DJ, SHANKAR A, JOHNSON JB, THOMAS S. Critical insights into antibiotic resistance transferability in probiotic Lactobacillus[J]. Nutrition, 2020, 69: 110567.
    [42] RAUF A, IMRAN M, ORHAN IE, BAWAZEER S. Health perspectives of a bioactive compound curcumin: a review[J]. Trends in Food Science & Technology, 2018, 74: 33-45.
    [43] CUI FJ, LI YB, WAN CX. Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis[J]. Bioresource Technology, 2011, 102(2): 1831-1836.
    [44] HASEGAWA M, YAMANE D, FUNATO K, YOSHIDA A, SAMBONGI Y. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis[J]. Journal of Bioscience and Bioengineering, 2018, 125(3): 316-319.
    [45] FLÓREZ AB, LADERO V, ÁLVAREZ-MARTÍN P, AMMOR MS, ÁLVAREZ MÁ, MAYO B. Acquired macrolide resistance in the human intestinal strain Lactobacillus rhamnosus E41 associated with a transition mutation in 23S rRNA genes[J]. International Journal of Antimicrobial Agents, 2007, 30(4): 341-344.
    [46] 宋可, 王俊豪, 万晓宝, 郝海红. 乳杆菌耐药风险及其药敏检测标准[J]. 中国抗生素杂志, 2023, 48(12): 1321-1333. SONG K, WANG JH, WAN XB, HAO HH. Risk of Lactobacillus drug resistance and standards for its antibiotic susceptibility test[J]. Chinese Journal of Antibiotics, 2023, 48(12): 1321-1333 (in Chinese).
    [47] FUKAO M, TOMITA H, YAKABE T, NOMURA T, IKE Y, YAJIMA N. Assessment of antibiotic resistance in probiotic strain Lactobacillus brevis KB290[J]. Journal of Food Protection, 2009, 72(9): 1923-1929.
    [48] 中华人民共和国国家卫生健康委员会. 抗菌药物敏感性试验的技术要求: WS/T 639—2018[S]. 北京: 中国标准出版社, 2018. National Health Commission of the People’s Republic of China. Technical specification on antimicrobial susceptibility tests: WS/T 639—2018[S]. Beijing: Standards Press of China, 2018 (in Chinese).
    [49] PARKER HM, JOHNSON NA, BURDON CA, COHN JS, O’CONNOR HT, GEORGE J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis[J]. Journal of Hepatology, 2012, 56(4): 944-951.
    [50] FERENCE BA, GINSBERG HN, GRAHAM I, RAY KK, PACKARD CJ, BRUCKERT E, HEGELE RA, KRAUSS RM, RAAL FJ, SCHUNKERT H, WATTS GF, BORÉN J, FAZIO S, HORTON JD, MASANA L, NICHOLLS SJ, NORDESTGAARD BG, van de SLUIS B, TASKINEN MR, TOKGÖZOGLU L, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel[J]. European Heart Journal, 2017, 38(32): 2459-2472.
    [51] YUAN F, DONG H, GONG J, WANG DK, HU ML, HUANG WY, FANG K, QIN X, QIU X, YANG XP, LU FE. A systematic review and meta-analysis of randomized controlled trials on the effects of turmeric and curcuminoids on blood lipids in adults with metabolic diseases[J]. Advances in Nutrition, 2019, 10(5): 791-802.
    [52] FRANSEN F, van BEEK AA, BORGHUIS T, MEIJER B, HUGENHOLTZ F, VAN DER GAAST-DE JONGH C, SAVELKOUL HF, de JONGE MI, FAAS MM, BOEKSCHOTEN MV, SMIDT H, EL AIDY S, de VOS P. The impact of gut microbiota on gender-specific differences in immunity[J]. Frontiers in Immunology, 2017, 8: 754.
    [53] YOON K, KIM N. Roles of sex hormones and gender in the gut microbiota[J]. Journal of Neurogastroenterology and Motility, 2021, 27(3): 314-325.
    [54] YIN XQ, AN YX, YU CG, KE J, ZHAO D, YU K. The association between fecal short-chain fatty acids, gut microbiota, and visceral fat in monozygotic twin pairs[J]. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2022, 15: 359-368.
    [55] LUO L, HU MH, LI Y, CHEN YX, ZHANG SB, CHEN JH, WANG YY, LU BY, XIE ZY, LIAO QF. Association between metabolic profile and microbiomic changes in rats with functional dyspepsia[J]. RSC Advances, 2018, 8(36): 20166-20181.
    [56] HUANG YL, YING N, ZHAO QH, CHEN JL, TEOW SY, DONG W, LIN MJ, JIANG LL, ZHENG H. Amelioration of obesity-related disorders in high-fat diet-fed mice following fecal microbiota transplantation from inulin-dosed mice[J]. Molecules, 2023, 28(10): 3997.
    [57] ETXEBERRIA U, HIJONA E, AGUIRRE L, MILAGRO FI, BUJANDA L, RIMANDO AM, MARTÍNEZ JA, PORTILLO MP. Pterostilbene- induced changes in gut microbiota composition in relation to obesity[J]. Molecular Nutrition & Food Research, 2017, 61(1). DOI: 10.1002/mnfr.201500906.
    [58] TAMANAI-SHACOORI Z, SMIDA I, BOUSARGHIN L, LOREAL O, MEURIC V, FONG SB, BONNAURE- MALLET M, JOLIVET-GOUGEON A. Roseburia spp.: a marker of health?[J]. Future Microbiology, 2017, 12: 157-170.
    [59] DERRIEN M, van HYLCKAMA VLIEG JET. Fate, activity, and impact of ingested bacteria within the human gut microbiota[J]. Trends in Microbiology, 2015, 23(6): 354-366.
    [60] WELLS JM. Immunomodulatory mechanisms of lactobacilli[J]. Microbial Cell Factories, 2011, 10(Suppl 1): S17.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHOU Liping, LIU Zhihao, XIANG Jinfeng, WAN Xinran, YU Feng, YAN Haiju, REN Cong, XU Yan. Fermentation characteristics and safety evaluation of high-yield gamma-aminobutyric acid-producing Lactobacillus brevis D17 on hydrolyzed oat milk[J]. Microbiology China, 2024, 51(8): 3041-3058

Copy
Share
Article Metrics
  • Abstract:103
  • PDF: 238
  • HTML: 199
  • Cited by: 0
History
  • Received:February 09,2024
  • Revised:March 31,2024
  • Online: August 20,2024
  • Published: August 20,2024
Article QR Code