Secondary metabolism potential of Saccharothrix and establishment of gene editing systems in representative strains
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • | | | |
  • Comments
    Abstract:

    [Background] Rare actinomycetes represent a “new treasure trove” for discovering natural products. Studies remain to be carried out to explore the natural product-producing potential of Saccharothrix as typical rare actinomycetes. Furthermore, few studies reported gene editing systems specifically tailored for Saccharothrix. [Objective] This study aims to elucidate the potential of Saccharothrix in synthesizing natural products with diverse structures. Additionally, we seek to establish gene editing systems for representative strains, thereby fostering the discovery of novel natural compounds and advancing the research on related biosynthetic pathways. [Methods] Multi-locus sequence analysis (MLSA) was employed to assess the similarity among 34 publicly available Saccharothrix genomes. The tool antiSMASH was utilized to analyze the gene clusters and the structural information of associated products. Additionally, BiG-SCAPE was applied for clustering analysis of these gene clusters. The representative strains, Saccharothrix australiensis DSM 43800 and S. syringae NRRL B-16468, were selected, for which the conjugation transfer and gene editing systems were established via integrative vectors and gene knockout vectors. [Results] The analysis of the 34 Saccharothrix genomes revealed a total of 1 348 natural product biosynthetic gene clusters, with an average of approximately 40 clusters per genome. The gene clusters were abundant in the biosynthesis of polyketides, non-ribosomal peptides, hybrid products of polyketides and non-ribosomal peptides, as well as ribosomally synthesized and post-translational modified peptides. The 1 348 gene clusters were grouped into 852 gene cluster families (GCFs), which were further grouped into 130 gene cluster clans (GCCs). This study established and optimized a conjugation transfer system applicable to S. australiensis DSM 43800 and S. syringae NRRL B-16468. Additionally, gene editing systems were successfully established for the two representative strains, with the establishment of corresponding mutant strains. [Conclusion] As rare actinomycetes, Saccharothrix exhibit a rich array of natural product biosynthetic gene clusters, highlighting robust potential for synthesizing diverse natural compounds, particularly polyketides and polypeptides. Moreover, this study achieves precise editing of the Saccharothrix genome, laying a solid foundation for probing into the gene clusters and associated products.

    Reference
    [1] KIM L. The science of antibiotic discovery[J]. Cell, 2020, 181(1): 29-45.
    [2] BROWN ED, WRIGHT GD. Antibacterial drug discovery in the resistance era[J]. Nature, 2016, 529: 336-343.
    [3] TACCONELLI E, CARRARA E, SAVOLDI A, HARBARTH S, MENDELSON M, MONNET DL, PULCINI C, KAHLMETER G, KLUYTMANS J, CARMELI Y, OUELLETTE M, OUTTERSON K, PATEL J, CAVALERI M, COX EM, HOUCHENS CR, GRAYSON ML, HANSEN P, SINGH N, THEURETZBACHER U, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis[J]. The Lancet Infectious Diseases, 2018, 18(3): 318-327.
    [4] NEWMAN DJ, CRAGG GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019[J]. Journal of Natural Products, 2020, 83(3): 770-803.
    [5] BÉRDY J. Thoughts and facts about antibiotics: where we are now and where we are heading[J]. The Journal of Antibiotics, 2012, 65(8): 385-395.
    [6] TIWARI K, GUPTA RK. Rare actinomycetes: a potential storehouse for novel antibiotics[J]. Critical Reviews in Biotechnology, 2012, 32(2): 108-132.
    [7] AL-FADHLI AA, THREADGILL MD, MOHAMMED F, SIBLEY P, AL-ARIQI W, PARVEEN I. Macrolides from rare actinomycetes: structures and bioactivities[J]. International Journal of Antimicrobial Agents, 2022, 59(2): 106523.
    [8] PARRA J, BEATON A, SEIPKE RF, WILKINSON B, HUTCHINGS MI, DUNCAN KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces[J]. Current Opinion in Microbiology, 2023, 76: 102385.
    [9] 张举成, 杨雪琼, 周皓, 杨亚滨, 丁中涛. 2006–2018年稀有放线菌中的新天然产物[J]. 有机化学, 2019, 39(4): 982-1012. ZHANG JC, YANG XQ, ZHOU H, YANG YB, DING ZT. New natural products of rare Actinomycetes from 2006 to 2018[J]. Chinese Journal of Organic Chemistry, 2019, 39(4): 982-1012(in Chinese).
    [10] DING T, YANG LJ, ZHANG WD, SHEN YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity[J]. RSC Advances, 2019, 9(38): 21964-21988.
    [11] SCHOCH CL, CIUFO S, DOMRACHEV M, HOTTON CL, KANNAN S, KHOVANSKAYA R, LEIPE D, MCVEIGH R, O’NEILL K, ROBBERTSE B, SHARMA S, SOUSSOV V, SULLIVAN JP, SUN L, TURNER S, KARSCH-MIZRACHI I. NCBI Taxonomy: a comprehensive update on curation, resources and tools[J]. Database, 2020, 2020: baaa062.
    [12] LABEDA DP, TESTA RT, LECHEVALIER MP, LECHEVALIER HA. Saccharothrix: a new genus of the Actinomycetales related to Nocardiopsis[J]. International Journal of Systematic Bacteriology, 1984, 34(4): 426-431.
    [13] WEI B, LUO X, ZHOU ZY, HU GG, LI L, LIN HW, WANG H. Discovering the secondary metabolic potential of Saccharothrix[J]. Biotechnology Advances, 2024, 70: 108295.
    [14] LI ZP, GAO XN, KANG ZS, HUANG LL, FAN DY, YAN X, KANG ZS. Saccharothrix yanglingensis strain Hhs.015 is a promising biocontrol agent on apple Valsa canker[J]. Plant Disease, 2016, 100(2): 510-514.
    [15] ASIF R, SIDDIQUE MH, HAYAT S, RASUL I, NADEEM H, FAISAL M, WASEEM M, ZAKKI SA, ZITOUNI A, MUZAMMIL S. Efficacy of Saccharothrix algeriensis NRRL B-24137 to suppress Fusarium oxysporum f. sp. vasinfectum induced wilt disease in cotton[J]. PeerJ, 2023, 11: e14754.
    [16] 张凡忠, 相长君, 张骊駻. 进化与大数据导向生物信息学在天然产物研究中的发展及应用[J]. 合成生物学, 2023, 4(4): 629-650. ZHANG FZ, XIANG CJ, ZHANG LH. Advances and applications of evolutionary analysis and big-data guided bioinformatics in natural product research[J]. Synthetic Biology Journal, 2023, 4(4): 629-650(in Chinese).
    [17] 杨谦, 程伯涛, 汤志军, 刘文. 基因组挖掘在天然产物发现中的应用和前景[J]. 合成生物学, 2021, 2(5): 697-715. YANG Q, CHENG BT, TANG ZJ, LIU W. Applications and prospects of genome mining in the discovery of natural products[J]. Synthetic Biology Journal, 2021, 2(5): 697-715(in Chinese).
    [18] PAN GH, XU ZR, GUO ZK, HINDRA, MA M, YANG D, ZHOU H, GANSEMANS Y, ZHU XC, HUANG Y, ZHAO LX, JIANG Y, CHENG JH, van NIEUWERBURGH F, SUH JW, DUAN YW, SHEN B. Discovery of the leinamycin family of natural products by mining actinobacterial genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(52): E11131-E11140.
    [19] BIERMAN M, LOGAN R, O’BRIEN K, SENO ET, RAO RN, SCHONER BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.[J]. Gene, 1992, 116(1): 43-49.
    [20] ALTING-MEES MA, SHORT JM. pBluescript II: gene mapping vectors[J]. Nucleic Acids Research, 1989, 17(22): 9494.
    [21] SUN YH, HE XY, LIANG JD, ZHOU XF, DENG ZX. Analysis of functions in plasmid pHZ1358 influencing its genetic and structural stability in Streptomyces lividans 1326[J]. Applied Microbiology and Biotechnology, 2009, 82(2): 303-310.
    [22] GUST B, CHALLIS GL, FOWLER K, KIESER T, CHATER KF. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(4): 1541-1546.
    [23] FU J, BIAN XY, HU S, WANG HL, HUANG F, SEIBERT PM, PLAZA A, XIA LQ, MÜLLER R, STEWART AF, ZHANG YM. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30: 440-446.
    [24] COBB RE, WANG YJ, ZHAO HM. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. ACS Synthetic Biology, 2015, 4(6): 723-728.
    [25] SAMBROOK J, RUSSELL DW. Molecular Cloning: a Laboratory Manual[M]. 3rd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 2001.
    [26] KIESER T, BIBB MJ, BUTTNER MJ, CHATER KF, HOPWOOD DA. Practical Streptomyces Genetics[M]. Norwich: the John Innes Foundation, 2000.
    [27] SHIRLING EB, GOTTLIEB D. Methods for characterization of Streptomyces species[J]. International Journal of Systematic Bacteriology, 1966, 16(3): 313-340.
    [28] LABEDA DP, DUNLAP CA, RONG XY, HUANG Y, DOROGHAZI JR, JU KS, METCALF WW漮渠?潨晹?瑯桧敥?来汴祩捣漠獲祥汬慡瑴楩潯湮?楨湩?瑳栠敩?戠楴潨獥礠湦瑡桭敩獬楹猠?潩显?瑴桲敥?桴敯灭瑹慣摥整捡慣来污祥挼漯獩椾搠敵?慩湮瑧椠扭極潬瑴楩挭?獯慣捵捳栠慳牥潱浵楥据楣湥??孮?嵬??呩桳敛??漮甠牁湮慴汯?潩晥?佖牡杮愠湌楥捥??桥敮浨楯獥瑫爬礠?‰㈱?水ㄠ?????ㄩ?????????????资???扝爠?孏??崠??伬?塈???升????剔???啮?????婥??乬??奴????啯?????圠?乩??兴????摯敭湹瑣楥晳椠捨慹瑧楲潯湳?潯晰?湣潵捳愼洯祩挾椠湣?扡楤潥猠祵湳瑩桮敧琠業捵?杴敩湬敯?捵汳甠獳瑥敱牵?普牣潥洠??楡?卹慳捩捳栠慡牮潤琠桄牎楁砭?獎祁爠楨湹杢慲敩??楺??乩副剮??????????慮湧搠?杨敥渠敍牌慓瑁椠潳湣?潥晭?渠敦睯?渠潳捹慳浴祥捭楡湴?摣敳爠楯癦愠瑴楨癥攠獷?扯祬?洠慧湥楮灵畳汛慊瑝椮渠杓?杳整湥敭?捴汩畣猠瑡敮牤嬠?嵰???楥捤爠潍扩楣慲汯??敯汬汯??愬挠琲漰爱椲攬猠?‵㈨?ㄩ???????????せ???戠牔?孍??嵁?卋??乓?充奃???????婋??????央????啁?失??娠?佯乬???乬?????塯???剩?乮?塲???卥啮???奣???啮???????佶?乲婳??婮??丱??奝??????乣?塬奡??婂?佯啬??????敤渠潅浶敯?杵畴楩摯敮搬?搲椰猲挱漬瘠攳爸礨?漩昺?栳椰朲栲氭礳‰漲砷礮朼敢湲愾瑛攳搱?愠牌潅浔慕瑎楉捃?灉漬氠祂歏敒瑋椠摐攮猠??獴慥捲捡档慴物潶瑥栠牔楲硥楥渠獯??????映爨潩浔?瑌栩攠?爵愺爠敡?洠慯牮楬湩敮?愠捴瑯楯湬漠浦祯捲攠瑰敨??楯?卥慮捥捴桩慣爠潴瑲桥牥椠硤??楰??獹瀠?????孮?嵯???潩畯牮湛慊汝?漠晎?乣慬瑥畩牣愠汁?偩牤潳搠畒捥瑳獥???と水ㄠ?‰???ㄠ????㈱????有????296.
    [32] BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50.
    [33] NAVARRO-MUÑOZ JC, SELEM-MOJICA N, MULLOWNEY MW, KAUTSAR SA, TRYON JH, PARKINSON EI, de LOS SANTOS ELC, YEONG M, CRUZ-MORALES P, ABUBUCKER S, ROETERS A, LOKHORST W, FERNANDEZ-GUERRA A, CAPPELINI LTD, GOERING AW, THOMSON RJ, METCALF WW, KELLEHER NL, BARONA-GOMEZ F, MEDEMA MH. A computational framework to explore large-scale biosynthetic diversity[J]. Nature Chemical Biology, 2020, 16: 60-68.
    [34] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN N, SCHWIKOWSKI B, IDEKER T. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504.
    [35] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617.
    [36] ZHAO JF, MO TL, LI XH, DING W, ZHANG Q. Dissecti
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Dong, FAN Keqiang, HU Huitao, PAN Guohui. Secondary metabolism potential of Saccharothrix and establishment of gene editing systems in representative strains[J]. Microbiology China, 2024, 51(7): 2614-2629

Copy
Share
Article Metrics
  • Abstract:134
  • PDF: 493
  • HTML: 343
  • Cited by: 0
History
  • Received:January 19,2024
  • Adopted:February 18,2024
  • Online: July 20,2024
  • Published: July 20,2024
Article QR Code