Diversity of cultivable bacteria from East Dongting Lake in winter
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] East Dongting Lake occupies a special geographical location and harbors abundant species resources, including a variety of microorganisms with unique physiological and biochemical characteristics. [Objective] To obtain the bacterial resources with tolerance to heavy metals and polycyclic aromatic hydrocarbons (PAHs) by the culturable methods and clarify their physiological characteristics. [Method] Forty samples were collected from five different regions of East Dongting Lake in January 2022 for the measurement of environmental factors. The bacteria were isolated, microbial strain resources were obtained, and the correlations of bacteria with environmental factors were analyzed. [Results] A total of 253 bacterial strains were isolated, including 210 strains with tolerance to heavy metals and 43 strains with tolerance to PAHs. The strains belonged to 42 genera, which were dominated by Pseudomonas (46.6%), Fictibacillus (7.5%), Pseudarthrobacter (6.7%) and Bacillus (5.1%). After re-screening, 30 strains with strong tolerance to heavy metals and 7 strains with strong tolerance to PAHs were obtained. Specifically, 20, 4, 3 and 3 strains showed tolerance to Mg2+, Mn2+, Ni2+ and Zn2+, with the maximum tolerance concentrations (MTCs) of 500, 500, 30 and 25 mmol/L, respectively. 5 and 2 strains had tolerance to naphthalene and phenanthrene, with the MTCs of 0.04 g/mL and 0.02 g/mL, respectively. Two strains of potentially novel species and one strain of potentially novel genus were identified in this study. [Conclusion] The bacterial diversity varied among the samples from five regions, being higher in Yueshan, Yueyanglou, and Junshan than that in Lujiao and Nanhu. The temperature, total dissolved solids, electrical conductivity, and dissolved oxygen had the greatest influences on the composition of bacterial community, while pH and salinity had the least influences. The low number of strains with strong tolerance to heavy metals and PAHs in this study may be associated with the effective pollution control in East Dongting Lake.

    Reference
    [1] 吴庆龙, 江和龙. 中国湖泊微生物组研究[J]. 中国科学院院刊, 2017, 32(3): 273-279.WU QL, JIANG HL. China Lake Microbiome Project[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(3): 273-279 (in Chinese).
    [2] 张光贵. 洞庭湖水环境健康风险评价[J]. 湿地科学与管理, 2013, 9(4): 26-29.ZHANG GG. Health risk assessment of the water environment of Dongting Lake[J]. Wetland Science & Management, 2013, 9(4): 26-29 (in Chinese).
    [3] 任丽娟, 何聃, 邢鹏, 王毓菁, 吴庆龙. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性, 2013, 21(4): 421-432.REN LJ, HE D, XING P, WANG YJ, WU QL. Bacterial diversity and ecological function in lake water bodies[J]. Biodiversity Science, 2013, 21(4): 421-432 (in Chinese).
    [4] 尹宇莹, 彭高卓, 谢意南, 莫永涛, 李芬芳, 欧阳美凤, 黄代中. 洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析[J]. 环境化学, 2021, 40(8): 2399-2409.YIN YY, PENG GZ, XIE YN, MO YT, LI FF, OUYANG MF, HUANG DZ. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake[J]. Environmental Chemistry, 2021, 40(8): 2399-2409 (in Chinese).
    [5] LIU SH, ZENG GM, NIU QY, LIU Y, ZHOU L, JIANG LH, TAN XF, XU P, ZHANG C, CHENG M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review[J]. Bioresource Technology, 2017, 224: 25-33.
    [6] CHENG H, ZHANG S, HUO YY, JIANG XW, ZHANG XQ, PAN J, ZHU XF, WU M. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt 2): 562-569.
    [7] HALL TA. Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/nt[J]. Nucleic Acids Symposium Series, 1999, 41(41): 95-98.
    [8] KIM OS, CHO YJ, LEE K, YOON SH, KIM M, NA H, PARK SC, JEON YS, LEE JH, YI H, WON S, CHUN J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 3): 716-721.
    [9] STACKEBRANDT E, GOEBEL BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. International Journal of Systematic and Evolutionary Microbiology, 1994, 44(4): 846-849.
    [10] LUDWIG W, STRUNK O, KLUGBAUER S, KLUGBAUER N, WEIZENEGGER M, NEUMAIER J, BACHLEITNER M, SCHLEIFER KH. Bacterial phylogeny based on comparative sequence analysis (review)[J]. Electrophoresis, 1998, 19(4): 554-568.
    [11] THOMPSON JD, HIGGINS DG, GIBSON TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice[J]. Nucleic Acids Research, 1994, 22(22): 4673-4680.
    [12] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
    [13] KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.
    [14] SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [15] XIE JM, CHEN YR, CAI GJ, CAI RL, HU Z, WANG H. Tree visualization by one table (tvBOT): a web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 2023, 51(W1): W587-W592.
    [16] 吴月红, 韩正兵, 张心齐, 周亚东, 吴敏, 许学伟. 南极普里兹湾可培养浮游细菌群落结构研究[J]. 极地研究, 2014, 26(2): 222-229.WU YH, HAN ZB, ZHANG XQ, ZHOU YD, WU M, XU XW. Community composition of Antarctic bacterioplankton isolated from the Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2014, 26(2): 222-229 (in Chinese).
    [17] 刘晓红, 李校, 彭志杰. 生物多样性计算方法的探讨[J]. 河北林果研究, 2008, 23(2): 166-168.LIU XH, LI X, PENG ZJ. The discussion on calculation methods of biodiversity[J]. Hebei Journal of Forestry and Orchard Research, 2008, 23(2): 166-168 (in Chinese).
    [18] LEE SD, KIM IS. Microbacterium tenebrionis sp. nov. and Microbacterium allomyrinae sp. nov., isolated from larvae of Tenebrio molitor L. and Allomyrina dichotoma, respectively[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(3): 005729.
    [19] XIE FQ, NIU SW, LIN XH, PEI SX, JIANG L, TIAN Y, ZHANG GY. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria[J]. Journal of Microbiology, 2021, 59(10): 886-897.
    [20] LU HB, DENG TC, CAI ZP, LIU FF, YANG XN, WANG YH, XU MY. Janthinobacterium violaceinigrum sp. nov., Janthinobacterium aquaticum sp. nov. and Janthinobacterium rivuli sp. nov., isolated from a subtropical stream in China[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4): 2719-2725.
    [21] CHOI GM, LEE SY, KIM SY, WEE JH, IM WT. Hydrogenophaga borbori sp. nov., isolated from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 555-561.
    [22] FARÍAS ME, CONTRERAS M, RASUK MC, KURTH D, FLORES MR, POIRÉ DG, NOVOA F, VISSCHER PT. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile[J]. Extremophiles, 2014, 18(2): 311-329.
    [23] 张雨晴, 邵克强, 胡洋, 丁艳青, 张恩楼, 高光, 汤祥明. 岱海水体及沉积物细菌多样性及群落组成特征[J]. 湖泊科学, 2022, 34(6): 2070-2082.ZHANG YQ, SHAO KQ, HU Y, DING YQ, ZHANG EL, GAO G, TANG XM. Bacterial diversity and community composition in lake water and sediment of Lake Daihai[J]. Journal of Lake Sciences, 2022, 34(6): 2070-2082 (in Chinese).
    [24] SHU DT, HE YL, YUE H, WANG QY. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing[J]. Bioresource Technology, 2015, 186: 163-172.
    [25] 张姜, 黄嘉丰, 李艳玲, 刘丹, 吴日帮, 廖斌强, 雷鸣, 肖潇, 武翠玲, 何海伦. 西南地区高山湖泊中可培养细菌多样性及其所产胞外活性物质的特性[J]. 微生物学通报, 2017, 44(9): 2043-2054.ZHANG J, HUANG JF, LI YL, LIU D, WU RB, LIAO BQ, LEI M, XIAO X, WU CL, HE HL. Diversity of culturable bacteria and their extracellular active substance properties in alpine lakes of Southwest China[J]. Microbiology China, 2017, 44(9): 2043-2054 (in Chinese).
    [26] 江红, 林如, 陈路劼, 林浩, 聂毅磊, 连云阳. 智利海洋沉积物中放线菌多样性[J]. 微生物学报, 2010, 50(7): 862-869.JIANG H, LIN R, CHEN LJ, LIN H, NIE YL, LIAN YY. Actinobacterial diversity of marine sediment samples from Chile[J]. Acta Microbiologica Sinica, 2010, 50(7): 862-869 (in Chinese).
    [27] 王敏, 张雨桐, 黄晨, 任杰辉, 万甜, 程文. 西安市景观湖泊水体细菌群落结构分析与代谢功能预测[J]. 环境科学, 2023, 44(2): 847-856.WANG M, ZHANG YT, HUANG C, REN JH, WAN T, CHENG W. Bacterial community structure and the prediction of metabolic function in landscape lake water in Xi’an[J]. Environmental Science, 2023, 44(2): 847-856 (in Chinese).
    [28] 曹新益, 徐慧敏, 王司辰, 黄睿, 沈烽, 何肖微, 余钟波, 赵大勇. 南京莫愁湖与紫霞湖浮游细菌群落结构的季节性变化及其与环境因子的关系[J]. 化学与生物工程, 2016, 33(12): 19-26, 30.CAO XY, XU HM, WANG SC, HUANG R, SHEN F, HE XW, YU ZB, ZHAO DY. Seasonal variation of bacterioplankton community structure and its relationship with environmental factors of Mochou Lake and Zixia Lake in Nanjing[J]. Chemistry & Bioengineering, 2016, 33(12): 19-26, 30 (in Chinese).
    [29] BATRICH M, MASKERI L, SCHUBERT R, HO B, KOHOUT M, ABDELJABER M, ABUHASNA A, KHOLOKI M, PSIHOGIOS P, RAZZAQ T, SAWHNEY S, SIDDIQUI S, XOUBI E, COOPER A, HATZOPOULOS T, PUTONTI C. Pseudomonas diversity within urban freshwaters[J]. Frontiers in Microbiology, 2019, 10: 195.
    [30] 王伟伟. 假单胞菌分解代谢芳香化合物的分子机理研究[D]. 上海: 上海交通大学博士学位论文, 2019.WANG WW. Genomic and biochemical study of the catabolism of aromatic compounds by Pseudomonas[D]. Shanghai: Doctoral Dissertation of Shanghai Jiao Tong University, 2019 (in Chinese).
    [31] 唐赟. Pseudomonas生物膜的构建、产氰特性及其对电子垃圾贵金属的浸出作用[D]. 扬州: 扬州大学硕士学位论文, 2021.TANG Y. Construction of Pseudomonas biofilm, cyanogen production characteristics and its leaching effect on precious metals from electronic waste[D]. Yangzhou: Master’s Thesis of Yangzhou University, 2021 (in Chinese).
    [32] PAL D, BHARDWAJ A, KAUR N, SUDAN SK, BISHT B, KUMARI M, VYAS B, KRISHNAMURTHI S, MAYILRAJ S. Fictibacillus aquaticus sp. nov., isolated from downstream river water[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1): 160-164.
    [33] BUSSE HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(1): 9-37.
    [34] SHIN B, PARK C, LEE BH, LEE KE, PARK W. Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(3): 1843-1849.
    [35] 孙霞, 刘扬, 王芳, 张虎, 毛淑敏, 亓翠英. 洞庭湖区可培养细菌群落结构及其空间分布特征[J]. 湖北农业科学, 2022, 61(7): 13-19.SUN X, LIU Y, WANG F, ZHANG H, MAO SM, QI CY. Community structure and spatial distribution characteristics of culturable bacteria in Dongting Lake[J]. Hubei Agricultural Sciences, 2022, 61(7): 13-19 (in Chinese).
    [36] 杨宇, 钱林, 代沁芸, 万民熙, 黄芝英, 师舞阳, 邱冠周. 湖南岳阳洞庭湖3个样点的表层水体细菌多样性研究[J]. 生命科学研究, 2008, 12(4): 333-339.YANG Y, QIAN L, DAI QY, WAN MX, HUANG ZY, SHI WY, QIU GZ. The diversity of surface aquatic bacteria from Lake Dongting in Yueyang, Hunan[J]. Life Science Research, 2008, 12(4): 333-339 (in Chinese).
    [37] 韩晶, 胡文革, 王艳萍, 武菲, 张晓红, 王翠华. 新疆艾比湖湿地博乐河入口处土壤细菌多样性分析[J]. 微生物学通报, 2014, 41(11): 2244-2253.HAN J, HU WG, WANG YP, WU F, ZHANG XH, WANG CH. Bacterial diversity in Bole river entrance soil of Ebinur Lake wetland, Xinjiang by 16S rRNA gene sequence analysis[J]. Microbiology China, 2014, 41(11): 2244-2253 (in Chinese).
    [38] 毕斌, 卢少勇, 于亚军, 任珊珊, 郭李凯, 刘晓晖. 湖泊沉积物重金属赋存形态研究进展[J]. 科技导报, 2016, 34(18): 162-169.BI B, LU SY, YU YJ, REN SS, GUO LK, LIU XH. Research progress on the speciation of heavy metals in lake sediments[J]. Science & Technology Review, 2016, 34(18): 162-169 (in Chinese).
    [39] STEVENSON BS, EICHORST SA, WERTZ JT, SCHMIDT TM, BREZNAK JA. New strategies for cultivation and detection of previously uncultured microbes[J]. Applied and Environmental Microbiology, 2004, 70(8): 4748-4755.
    [40] CONNON SA, GIOVANNONI SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates[J]. Applied and Environmental Microbiology, 2002, 68(8): 3878-3885.
    [41] STEINERT G, WHITFIELD S, TAYLOR MW, THOMS C, SCHUPP PJ. Application of diffusion growth chambers for the cultivation of marine sponge-associated bacteria[J]. Marine Biotechnology, 2014, 16(5): 594-603.
    [42] 李晓丹, 屈建航, 周佳, 张璐洁, 李海峰, 田海龙. 泥浸汁对太湖沉积物中的好氧可培养细菌多样性的影响[J]. 微生物学通报, 2017, 44(3): 554-560.LI XD, QU JH, ZHOU J, ZHANG LJ, LI HF, TIAN HL. Effect of sediment extract on the culturable aerobic bacterial diversity in the sediments of Taihu Lake[J]. Microbiology China, 2017, 44(3): 554-560 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GUO Lili, YI Lidong, LIU Xujing, WANG Kang, SHI Tao, XU Luo, CHEN Na, ZHANG Yang, FU Geyi. Diversity of cultivable bacteria from East Dongting Lake in winter[J]. Microbiology China, 2024, 51(6): 2049-2064

Copy
Share
Article Metrics
  • Abstract:231
  • PDF: 537
  • HTML: 587
  • Cited by: 0
History
  • Received:June 04,2023
  • Adopted:September 21,2023
  • Online: June 07,2024
  • Published: June 20,2024
Article QR Code