The adsorption carrier of Bacillus velezensis PZ-3: screening and effects on microbial diversity in the rhizosphere soil of maize
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Carriers influences the effects and costs of microbial fertilizers. [Objective] To screen the vector with strong adsorption ability of Bacillus velezensis PZ-3. [Methods] We carried out adsorption experiments for B. velezensis PZ-3 with biochar, humic acid, biomass ash, organic fertilizer, mushroom bran, and rice husk powder as carriers. The carrier suitable for the target strain was screened by dilution coating-colony counting method, flow cytometry, and maize pot experiment. Then, we investigated the effects of the adsorbed target strain on the microbial diversity in the rhizosphere soil of maize. [Results] The best colonization effect was achieved in the rhizosphere soil of maize after the adsorption of the target strain by humic acid+mushroom bran. The abundance and number of the target strain in the rhizosphere soil of this treatment peaked at 1.28×105 CFU/g, with a relative abundance of 59.15%, on day 7. Compared with the control (original soil), this treatment increased the plant height, stem diameter, and aboveground dry weight of maize by 28.51%, 19.05%, and 48.65%, respectively. Moreover, this treatment increased the relative abundance of Streptomyces and Pseudomonas (P<0.05) and reduced the relative abundance of Paeniclostridium, Lophotrichus, and Gibberella in the rhizosphere soil of maize. [Conclusion] Humic acid combined with mushroom bran had a strong ability to adsorb B. velezensis PZ-3. The combination significantly promoted the growth of maize, increased the relative abundance of plant growth-promoting strains, and reduced the relative abundance of plant pathogenic fungi in the rhizosphere soil of maize.

    Reference
    [1] ZHOU YY, CHEN JS, ZHU XF, WANG YY, LIU XY, FAN HY, DUAN YX, CHEN LJ. Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode (Heterodera glycines) in soybean[J]. Pest Management Science, 2021, 77(1): 568-576.
    [2] FIRA D, DIMKIĆ I, BERIĆ T, LOZO J, STANKOVIĆ S. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.
    [3] COBAN O, de DEYN GB, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725.
    [4] TOSTI L, van ZOMEREN A, PELS JR, DIJKSTRA JJ, COMANS RNJ. Assessment of biomass ash applications in soil and cement mortars[J]. Chemosphere, 2019, 223: 425-437.
    [5] SÁNCHEZ C. Cultivation of Pleurotus ostreatus and other edible mushrooms[J]. Applied Microbiology and Biotechnology, 2010, 85(5): 1321-1337.
    [6] REN HY, ISLAM MS, WANG HY, GUO H, WANG ZS, QI XJ, ZHANG SW, GUO JN, WANG Q, LI B. Effect of humic acid on soil physical and chemical properties, microbial community structure, and metabolites of decline diseased bayberry[J]. International Journal of Molecular Sciences, 2022, 23(23): 14707.
    [7] NI N, KONG DY, WU WZ, HE J, SHAN ZJ, LI JY, DOU YZ, ZHANG YQ, SONG Y, JIANG X. The role of biochar in reducing the bioavailability and migration of persistent organic pollutants in soil-plant systems: a review[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(2): 157-165.
    [8] LI XN, WANG T, CHANG SX, JIANG X, SONG Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis[J]. The Science of the Total Environment, 2020, 749: 141593.
    [9] 张志斌, 朱晓湉, 刘婷婷, 张晓, 杨慧林, 颜日明, 朱笃. 高产吲哚乙酸东乡野生稻内生微杆菌KlspL18分离及鉴定[J]. 微生物学报, 2022, 62(11): 4108-4121.ZHANG ZB, ZHU XT, LIU TT, ZHANG X, YANG HL, YAN RM, ZHU D. Isolation and identification of a novel IAA high-producing endophytic strain KlspL18 from Oryza rufipogon[J]. Acta Microbiologica Sinica, 2022, 62(11): 4108-4121 (in Chinese).
    [10] GONZALEZ-PIMENTEL JL, DOMINGUEZ-MOÑINO I, JURADO V, LAIZ L, CALDEIRA AT, SAIZ-JIMENEZ C. The rare actinobacterium Crossiella sp. is a potential source of new bioactive compounds with activity against bacteria and fungi[J]. Microorganisms, 2022, 10(8): 1575.
    [11] BERGOGNE-BÉRÉZIN E, TOWNER KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features[J]. Clinical Microbiology Reviews, 1996, 9(2): 148-165.
    [12] CASTRO JF, RAZMILIC V, GOMEZ-ESCRIBANO JP, ANDREWS B, ASENJO J, BIBB M. The ‘gifted’ actinomycete Streptomyces leeuwenhoekii[J]. Antonie Van Leeuwenhoek, 2018, 111(8): 1433-1448.
    [13] 欧阳晓伦, 陈昭, 窦鑫, 张洪奇, 高亚梅, 晏磊, 邱化蛟, 王伟东. 贝莱斯芽孢杆菌YX-3的筛选鉴定及其抑菌效果[J]. 黑龙江八一农垦大学学报, 2022, 34(6): 64-70.OUYANG XL, CHEN Z, DOU X, ZHANG HQ, GAO YM, YAN L, QIU HJ, WANG WD. Screening and identification of Bacillus velezensis YX-3 and antagonistic effect[J]. Journal of Heilongjiang Bayi Agricultural University, 2022, 34(6): 64-70 (in Chinese).
    [14] LIU Y, TENG K, WANG T, DONG E, ZHANG M, TAO Y, ZHONG J. Antimicrobial Bacillus velezensis HC6: production of three kinds of lipopeptides and biocontrol potential in maize[J]. Journal of Applied Microbiology, 2020, 128(1): 242-254.
    [15] JU XT, XING GX, CHEN XP, ZHANG SL, ZHANG LJ, LIU XJ, CUI ZL, YIN B, CHRISTIE P, ZHU ZL, ZHANG FS. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
    [16] 刘芳, 韩丹, 赵铭钦, 李小勇, 管成伟. 微生物菌剂配施腐殖酸钾对植烟土壤改良及烤烟经济效益的影响[J]. 浙江农业学报, 2017, 29(7): 1064-1069.LIU F, HAN D, ZHAO MQ, LI XY, GUAN CW. Effects of application of microbial agents along with humic acid potassium on tobacco-planted soil and economic benefit of flue-cured tobacco[J]. Acta Agriculturae Zhejiangensis, 2017, 29(7): 1064-1069 (in Chinese).
    [17] 史振声, 李海燕, 李凤海, 吴玉群, 杨翠翠, 王志斌, 王宏伟, 吕香玲, 朱敏. 玉米株高的年际间变化及其与产量的关系研究[J]. 玉米科学, 2013, 21(5): 24-29.SHI ZS, LI HY, LI FH, WU YQ, YANG CC, WANG ZB, WANG HW, LÜ XL, ZHU M. Relationship between the interannual change of maize height and yield[J]. Journal of Maize Sciences, 2013, 21(5): 24-29 (in Chinese).
    [18] ZHANG M, SONG G, GELARDI DL, HUANG LB, KHAN E, MAŠEK O, PARIKH SJ, OK YS. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water[J]. Water Research, 2020, 186: 116303.
    [19] 高齐霖, 杨建, 李蓉, 赖刚, 许莲花. 南沙链霉菌来源细胞色素P450酶CYP154C34的表征及生物转化[J]. 微生物学报, 2024, 64(2): 502-515.GAO QL, YANG J, LI R, LAI G, XU LH. Characterization and biotransformation of cytochrome P450 CYP154C34 from Streptomyces nanshensis[J]. Acta Microbiologica Sinica, 2024, 64(2): 502-515 (in Chinese).
    [20] LI XX, HE LQ, LUO JH, ZHENG YL, ZHOU Y, LI DY, ZHANG YY, PAN ZR, LI YY, TAO L. Paeniclostridium sordellii hemorrhagic toxin targets TMPRSS2 to induce colonic epithelial lesions[J]. Nature Communications, 2022, 13: 4331.
    [21] 李娟, 王文丽, 赵旭. 一种假节杆菌及应用, 及其生物有机肥及应用[P]: CN110358711B. 2020-04-07.LI J, WANG WL, ZHAO X. A kind of Pseudarthrobacter and ITS application, and its bio-organic fertilizer and its application[P]: CN110358711B. 2020-04-07 (in Chinese).
    [22] GOLDBERG JB. Pseudomonas: global bacteria[J]. Trends in Microbiology, 2000, 8(2): 55-57.
    [23] ZERROUKI H, REBIAHI SA, ELHABIRI Y, FATMI A, BARON SA, PAGNIER I, DIENE SM, ROLAIN JM. Prevalence and antimicrobial resistance of Paeniclostridium sordellii in hospital settings[J]. Antibiotics, 2021, 11(1): 38.
    [24] 熊文斌, 卢晗, 刘新春. 诺卡氏菌烈性噬菌体vB_Ncarnea_KYD1的分离纯化与基因组分析[J]. 微生物学通报, 2022, 49(11): 4832-4847.XIONG WB, LU H, LIU XC. Isolation, purification, and genomic analysis of the virulent phage vB_Ncarnea_KYD1 from Nocardia spp.[J]. Microbiology China, 2022, 49(11): 4832-4847 (in Chinese).
    [25] 徐可心, 单夏男, 余知和, 邓建新, 王龙. 篮状菌属的三个中国新记录种[J]. 菌物学报, 2021, 40(8): 2181-2190.XU KX, SHAN XN, YU ZH, DENG JX, WANG L. Three species of Talaromyces (Ascomycota, Eurotiales) new to China[J]. Mycosystema, 2021, 40(8): 2181-2190 (in Chinese).
    [26] 王子俊. 防治黄瓜枯萎病的拮抗青霉菌株的分离鉴定及其功能性研究[D]. 泰安: 山东农业大学硕士学位论文, 2021.WANG ZJ. Isolation, identification and functional study of antagonistic Penicillium strain for controlling Fusarium wilt of cucumber [D]. Tai’an: Master’s Thesis of Shandong Agricultural University, 2021(in Chinese).
    [27] 张由真. 黄曲霉毒素生物防控复合微生物菌肥的研究[D]. 长春: 吉林大学硕士学位论文, 2021.ZHANG YZ. Research on the combined use of biofertilizer and chemical fertilizer for aflatoxin prevention[D]. Changchun: Master’s Thesis of Jilin University, 2021 (in Chinese).
    [28] 李超. 藤仓赤霉基因敲除体系的建立和p450-3基因敲除对赤霉素合成的影响[D]. 杭州: 浙江工业大学硕士学位论文, 2016.LI C. Establishment of transformation systems for Gibberella fujiuroi and effect of p450-3 gene deletion on gibberellins biosynthesis[D]. Hangzhou: Master’s Thesis of Zhejiang University of Technology, 2016 (in Chinese).
    [29] 陈芬, 余高, 王谢丰, 李廷亮, 孙约兵. 土壤真菌群落结构对辣椒长期连作的响应特征[J]. 环境科学, 2024, 45(1): 543-554.CHEN F, YU G, WANG XF, LI TL, SUN YB. Response characteristics of soil fungal community structure to long-term continuous cropping of pepper[J]. Environmental Science, 2024, 45(1): 543-554 (in Chinese).
    [30] 朱诗君, 王丽丽, 金树权, 汪峰, 周金波, 卢晓红. 微生物菌剂菌肥对西瓜连作障碍的缓解作用[J]. 中国农学通报, 2023, 39(28): 48-53.ZHU SJ, WANG LL, JIN SQ, WANG F, ZHOU JB, LU XH. The alleviating effect of microbial fertilizer on watermelon continuous cropping obstacles[J]. Chinese Agricultural Science Bulletin, 2023, 39(28): 48-53 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DOU Xin, GUO Pengbo, ZHANG Wei, WANG Jinghong, CHEN Zhao, HONG Yanhua, SUN Dongmei, WANG Weidong. The adsorption carrier of Bacillus velezensis PZ-3: screening and effects on microbial diversity in the rhizosphere soil of maize[J]. Microbiology China, 2024, 51(6): 2013-2029

Copy
Share
Article Metrics
  • Abstract:244
  • PDF: 800
  • HTML: 437
  • Cited by: 0
History
  • Received:January 01,2024
  • Adopted:March 25,2024
  • Online: June 07,2024
  • Published: June 20,2024
Article QR Code