Bacterial surface display and research progress in applications of this technology in environmental remediation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [84]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Bacterial surface display is an important biotechnology that involves expressing exogenous target proteins, peptides, or other biomolecules on the surface of bacterial cells to better realize their functions. This technology has been applied in various fields such as biocatalysis, bioremediation, biosensors, and vaccine design. This article first introduces the surface display systems of both Gram-negative and Gram-positive bacteria and summarizes the main host bacteria and anchored proteins currently known. It then reviews the latest research progress in the applications of bacterial surface display in bioremediation. Finally, this paper summarizes the limitations of bacterial surface display in application and makes an outlook on the future research directions, aiming to expand the specific applications of this technology in bioremediation practice.

    Reference
    [1] Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Wȩgrzyn G. Phage display and other peptide display technologies[J]. FEMS Microbiology Reviews, 2022, 46(2): 1-25.
    [2] van Bloois E, Winter RT, Kolmar H, Fraaije MW. Decorating microbes: surface display of proteins on Escherichia coli[J]. Trends in Biotechnology, 2011, 29(2): 79-86.
    [3] Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, Tohidkia MR, Mokhtarzadeh A, Muyldermans S. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages[J]. International Journal of Biological Macromolecules, 2022, 208: 421-442.
    [4] Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315-1317.
    [5] Lee SY, Choi JH, Xu Z. Microbial cell-surface display[J]. Trends in Biotechnology, 2003, 21(1): 45-52.
    [6] Liljeqvist S, Samuelson P, Hansson M, Nguyen TN, Binz H, Ståhl S. Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus[J]. Applied and Environmental Microbiology, 1997, 63(7): 2481-2488.
    [7] Nguyen HM, Pham ML, Stelzer EM, Plattner E, Grabherr R, Mathiesen G, Peterbauer CK, Haltrich D, Nguyen TH. Constitutive expression and cell-surface display of a bacterial β-mannanase in Lactobacillus plantarum[J]. Microbial Cell Factories, 2019, 18(1): 1-12.
    [8] Lin P, Yuan H, Du J, Liu K, Liu H, Wang T. Progress in research and application development of surface display technology using Bacillus subtilis spores[J]. Applied Microbiology and Biotechnology, 2020, 104(6): 2319-2331.
    [9] Lee SH, Lee SY, Park BC. Cell surface display of lipase in Pseudomonas putida KT2442 using OprF as an anchoring motif and its biocatalytic applications[J]. Applied and Environmental Microbiology, 2005, 71(12): 8581-8586.
    [10] Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications[J]. Microbial Cell Factories, 2016, 15(1): 1-16.
    [11] Chmielewski M, Kuehle J, Chrobok D, Riet N, Hallek M, Abken H. FimH-based display of functional eukaryotic proteins on bacteria surfaces[J]. Scientific Report, 2019, 9(1): 1-10.
    [12] PAN TX, HUANG HB, ZHANG JL, LI JY, LI MH, ZHAO DY, LI YN, ZHENG W, MA RG, WANG N, SHI CW, WANG CF, YANG GL. Lactobacillus plantarum surface-displayed Eimeria tenella profilin antigens with FliC flagellin elicit protection against coccidiosis in chickens[J]. Poultry Science, 2023, 102(10): 102945.
    [13] WANG Y, MARUTHAMUTHU MK, JEONG J, YOO IK, KIM TW, HONG SH. Development of fenitrothion adsorbing recombinant Escherichia coli by cell surface display of pesticide-binding peptide[J]. Journal of Biotechnology, 2020, 322: 90-95.
    [14] MARUTHAMUTHU MK, SELVAMANI V, NADARAJAN SP, YUN H, OH YK, EOM GT, HONG SH. Manganese and cobalt recovery by surface display of metal binding peptide on various loops of OmpC in Escherichia coli[J]. Journal of Industrial Microbiology and Biotechnology, 2018, 45(1): 31-41.
    [15] Han MJ. Novel bacterial surface display system based on the Escherichia coli protein MipA[J]. Journal of Microbiology and Biotechnology, 2020, 30(7): 1097-1103.
    [16] Jia Y, Samak NA, Hao X, Chen Z, Wen Q, Xing J. Hydrophobic cell surface display system of PETase as a sustainable biocatalyst for PET degradation[J]. Frontiers in Microbiology, 2022, 13: 1-11.
    [17] Li Q, Wang T, Ye Y, Guan S, Cai B, Zhang S, Rong S. A temperature-induced chitosanase bacterial cell-surface display system for the efficient production of chitooligosaccharides[J]. Biotechnology Letters, 2021, 43(8): 1625-1635.
    [18] Liu Y, Wang X, Nong S, Bai Z, Han N, Wu Q, Huang Z, Ding J. Display of a novel carboxylesterase CarCby on Escherichia coli cell surface for carbaryl pesticide bioremediation[J]. Microbial Cell Factories, 2022, 21(1): 97.
    [19] Lu CW, Ho HC, Yao CL, Tseng TY, Kao CM, Chen SC. Bioremediation potential of cadmium by recombinant Escherichia coli surface expressing metallothionein MTT5 from Tetrahymena thermophila[J]. Chemosphere, 2023, 310: 136850.
    [20] BALDERAS HERNANDEZ VE, SALAS-MONTANTES CJ, BARBA-DE LA ROSA AP, DE LEON-RODRIGUEZ A. Autodisplay of an endo-1,4-β-xylanase from Clostridium cellulovorans in Escherichia coli for xylans degradation[J]. Enzyme and Microbial Technology, 2021, 149: 109834.
    [21] Samuelson P, Gunneriusson E, Nygren PÅ, Ståhl S. Display of proteins on bacteria[J]. Journal of Biotechnology, 2002, 96(2): 129-154.
    [22] Majander K, Korhonen TK, Westerlund-Wikström B. Simultaneous display of multiple foreign peptides in the FliD capping and FliC filament proteins of the Escherichia coli flagellum[J]. Applied and Environmental Microbiology, 2005, 71(8): 4263-4268.
    [23] NICOLAY T, VANDERLEYDEN J, SPAEPEN S. Autotransporter-based cell surface display in Gram-negative bacteria[J]. Critical Reviews in Microbiology, 2015, 41(1): 109-123.
    [24] Lång H. Outer membrane proteins as surface display systems[J]. International Journal of Medical Microbiology, 2000, 290(7): 579-585.
    [25] Chen T, Wang K, Chi X, Zhou L, Li J, Liu L, Zheng Q, Wang Y, Yu H, Gu Y, Zhang J, Li S, Xia N. Construction of a bacterial surface display system based on outer membrane protein F[J]. Microbial Cell Factories, 2019, 18(1): 1-13.
    [26] Lee SH, Choi J Il, Park SJ, Lee SY, Park BC. Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis[J]. Applied and Environmental Microbiology, 2004, 70(9): 5074-5080.
    [27] Lee SH, Choi J Il, Han MJ, Choi JH, Lee SY. Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent[J]. Biotechnology and Bioengineering, 2005, 90(2): 223-230.
    [28] Han MJ, Lee SH. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT[J]. FEMS Microbiology Letters, 2015, 362(1): 1-7.
    [29] Narita J, Okano K, Tateno T, Tanino T, Sewaki T, Sung MH, Fukuda H, Kondo A. Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion[J]. Applied Microbiology and Biotechnology, 2006, 70(5): 564-572.
    [30] Baek JH, Han MJ, Lee SH, Lee SY. Enhanced display of lipase on the Escherichia coli cell surface, based on transcriptome analysis[J]. Applied and Environmental Microbiology, 2010, 76(3): 971-973.
    [31] Feng X, Jin M, Huang W, Liu W, Xian M. Whole-cell catalysis by surface display of fluorinase on Escherichia coli using N-terminal domain of ice nucleation protein[J]. Microbial Cell Factories, 2021, 20(1): 1-9.
    [32] Han L, Zhao Y, Cui S, Liang B. Redesigning of microbial cell surface and its application to whole-cell biocatalysis and biosensors[J]. Applied Biochemistry and Biotechnology, 2018, 185(2): 396-418.
    [33] Ding J, Zhou Y, Wang C, Peng Z, Mu Y, Tang X, Huang Z. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli[J]. Microbial Cell Factories, 2020, 19(1): 1-11.
    [34] Ding J, Liu Y, Gao Y, Zhang C, Wang Y, Xu B, Yang Y, Wu Q, Huang Z. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase[J]. Chemosphere, 2022, 289: 1-9.
    [35] Zhang Z, Liu J, Fan J, Wang Z, Li L. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase[J]. Analytica Chimica Acta, 2018, 1009: 65-72.
    [36] Yang C, Zhao Q, Liu Z, Li Q, Qiao C, Mulchandani A, Chen W. Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst[J]. Environmental Science & Technology, 2008, 42(16): 6105-6110.
    [37] Vahed M, Ramezani F, Tafakori V, Mirbagheri VS, Najafi A, Ahmadian G. Molecular dynamics simulation and experimental study of the surface-display of SPA protein via Lpp-OmpA system for screening of IgG[J]. AMB Express, 2020, 10(1): 1-9.
    [38] van Ulsen P, Zinner KM, Jong WSP, Luirink J. On display: autotransporter secretion and application[J]. FEMS Microbiology Letters, 2018, 365(18): 1-10.
    [39] GHAEDMOHAMMADI S, AHMADIAN G. The first report on the sortase-mediated display of bioactive protein a from staphylococcus aureus (SpA) on the surface of the vegetative form of Bacillus subtilis[J]. Microbial Cell Factories, 2021, 20(1): 212.
    [40] ZHANG X, HU S, DU X, LI T, HAN L, KONG J. Heterologous expression of carcinoembryonic antigen in Lactococcus lactis via LcsB-mediated surface displaying system for oral vaccine development[J]. Journal of Microbiology, Immunology and Infection, 2016, 49(6): 851-858.
    [41] LIU H, YANG S, WANG X, WANG T. Production of trehalose with trehalose synthase expressed and displayed on the surface of Bacillus subtilis spores[J]. Microbial Cell Factories, 2019, 18(1): 100.
    [42] MINGMONGKOLCHAI S, PANBANGRED W. Display of Escherichia coli phytase on the surface of Bacillus subtilis spore using CotG as an anchor protein[J]. Applied Biochemistry and Biotechnology, 2019, 187(3): 838-855.
    [43] VETRAKOVA A, CHOVANOVA RK, RECHTORIKOVA R, KRAJCIKOVA D, BARAK I. Bacillus subtilis spores displaying RBD domain of SARS-CoV-2 spike protein[J]. Computational and Structural Biotechnology, 2023, 21: 1550-1556.
    [44] HOSSEINI-ABARI A, KIM BG, LEE SH, EMTIAZI G, KIM W, KIM JH. Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein[J]. Journal of Basic Microbiology, 2016, 56(12): 1331-1337.
    [45] HSIEH H, LIN C, HSU S, STEWART G. A Bacillus spore-based display system for bioremediation of atrazine[J]. Applied and Environmental Microbiology, 2020, 86(18): e01230-20.
    [46] RICCA E, BACCIGALUPI L, ISTICATO R. Spore-adsorption: mechanism and applications of a non-recombinant display system[J]. Biotechnology Advances, 2021, 47: 107693.
    [47] Ravi J, Fioravanti A. S-layers: the proteinaceous multifunctional armors of gram-positive pathogens[J]. Frontiers in Microbiology, 2021, 12: 1-8.
    [48] Zhang X, Al-Dossary A, Hussain M, Setlow P, Li J. Applications of Bacillus subtilis spores in biotechnology and advanced materials[J]. Applied and Environmental Microbiology, 2020, 86(17): e01096-20.
    [49] Mohsin MZ, Omer R, Huang J, Mohsin A, Guo M, Qian J, Zhuang Y. Advances in engineered Bacillus subtilis biofilms and spores, and their applications in bioremediation, biocatalysis, and biomaterials[J]. Synthetic and Systems Biotechnology, 2021, 6(3): 180-191
    [50] Ugwuodo CJ, Nwagu TN. Stabilizing enzymes by immobilization on bacterial spores: a review of literature[J]. International Journal of Biological Macromolecules, 2021, 166: 238-250.
    [51] Donadio G, Lanzilli M, Sirec T, Ricca E, Isticato R. Localization of a red fluorescence protein adsorbed on wild type and mutant spores of Bacillus subtilis[J]. Microbial Cell Factories, 2016, 15: 153.
    [52] Lanzilli M, Donadio G, Fusco FA, Sarcinelli C, Limauro D, Ricca E, Isticato R. Display of the peroxiredoxin Bcp1 of Sulfolobus solfataricus on probiotic spores of Bacillus megaterium. New Biotechnology, 46: 38-44.
    [53] Ali M, Song X, Ding D, Wang Q, Zhang Z, Tang Z. Bioremediation of PAHs and heavy metals co-contaminated soils: challenges and enhancement strategies[J]. Environmental Pollution, 2022, 295: 118686.
    [54] Masotti F, Garavaglia BS, Gottig N, Ottado J. Bioremediation of the herbicide glyphosate in polluted soils by plant-associated microbes[J]. Current Opinion in Microbiology, 2023, 73: 102290.
    [55] Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, Bilal M, Aleya L, Iqbal HMN. Microbial bioremediation strategies with wastewater treatment potentialities: a review[J]. Science of The Total Environment, 2022, 818: 151754.
    [56] Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: mechanisms, challenges, and future prospects[J]. Journal of Environmental Management, 2023, 334: 117532.
    [57] Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: biogeochemical and molecular mechanisms and implications for bioremediation[J]. Journal of Hazardous Materials, 2023, 457: 131738.
    [58] Ravula AR, Yenugu S. Pyrethroid based pesticides–chemical and biological aspects[J]. Critical Reviews in Toxicology, 2021, 51(2): 117-1140.
    [59] Yang C, Xu X, Liu Y, Jiang H, Wu Y, Xu P, Liu R. Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase[J]. Scientific Reports, 2017, 7(1): 1-8.
    [60] Shi L, Liu P, Tan Z, Zhao W, Gao J, Gu Q, Ma H, Liu H, ZHU L. Complete depolymerization of PET wastes by an evolved PET hydrolase from directed evolution[J]. Angewandte Chemie International Edition, 2023, 62(14): e202218390.
    [61] Cook MA, Wright GD. The past, present, and future of antibiotics[J]. Science Translational Medicine, 2022, 14(657): eabo7793.
    [62] Jia X, Li Y, Xu T, Wu K. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation[J]. Biotechnology and Bioengineering, 2020, 117(12): 3820-3834.
    [63] Nanudorn P, Thiengmag S, Whangsuk W, Mongkolsuk S, Loprasert S. Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A[J]. Biochemical and Biophysical Research Communications, 2020, 528(4): 691-697.
    [64] Gao F, Ding H, Feng Z, Liu D, Zhao Y. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein[J]. Bioresource Technology, 2014, 169: 181-187.
    [65] Gao F, Ding H, Xu X, Zhao Y. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase[J]. Environmental Science Pollution Research, 2016, 23(21): 21319-21326.
    [66] YANG C, FREUDL R, QIAO C, MULCHANDANI A. Cotranslocation of methyl parathion hydrolase to the periplasm and of organophosphorus hydrolase to the cell surface of Escherichia coli by the Tat pathway and ice nucleation protein display system[J]. Applied and Environmental Microbiology, 2010, 76(2): 434-440.
    [67] Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, Murphy E, Jambeck J, Leonard G, Hilleary M, Eriksen M, Possingham H, Frond H, Gerber L, Polidorol B, Tahir A, Bernard M, Mallos N, Barnes M, Rochman C. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution[J]. Science, 2020, 369: 1515-1518.
    [68] Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, Ramachandran S, Tedstone A, Haigh S, Garforth A, Day P, Levy C, Shaver M, Green A. Directed evolution of an efficient and thermostable PET depolymerase[J]. Nature Catalysis, 2022, 5(8): 673-681.
    [69] Heyde SAH, Arnling Bååth J, Westh P, Nørholm MHH, Jensen K. Surface display as a functional screening platform for detecting enzymes active on PET[J]. Microbial Cell Factories, 2021, 20(1): 1-9.
    [70] Han W, Zhang J, Chen Q, Xie Y, Zhang M, Qu J, Tan Y, DIAO Y, WANG Y, ZHANG Y. Biodegradation of poly(ethylene terephthalate) through PETase surface-display: from function to structure[J]. Journal of Hazardous Materials, 2024, 461: 132632.
    [71] Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
    [72] Bollinger A, Thies S, Knieps-Grünhagen E, Gertzen C, Kobus S, Höppner A, Ferrer M, Gohlke H, Smits SHJ, Jaeger KE. A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri–structural and functional insights[J]. Frontier in Microbiology, 2020, 11: 1-16.
    [73] Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Shroff R, Acosta D, ALEXANDER B, COLE H, ZHANG Y, LYND N, ELLINGTON A, ALPER H. Machine learning-aided engineering of hydrolases for PET depolymerization[J]. Nature, 2022, 604(7907): 662-667.
    [74] Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E, Desrousseaux ML, Texier H, Gavalda S, Cot M, Guémard E, Dalibey M, Nomme J, Cioci G, Barbe S, Chateau M, André I, Duquesne S, Marty A. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216-219.
    [75] Yan F, Wei R, CUI Q, BORNSCHEUER U, LIU Y. Thermophilic whole-cell degradation of polyethylene terephthalate using engineered Clostridium thermocellum[J]. Microbial Biotechnology, 2021, 14(2): 374-385.
    [76] Liu M, Ni H, Yang L, Chen G, Yan X, Leng X, Liu P, Li X. Pretreatment of swine manure containing β-lactam antibiotics with whole-cell biocatalyst to improve biogas production[J]. Journal of Cleaner Production, 2019, 240: 118070.
    [77] Liu M, Feng P, Kakade A, Yang L, Chen G, Yan X, NI H, LIU P, KULSHRESHTHA S, ABOMOHRA A, LI X. Reducing residual antibiotic levels in animal feces using intestinal Escherichia coli with surface-displayed erythromycin esterase[J]. Journal of Hazardous Materials, 2020, 388: 122032.
    [78] Li R, Zhou T, Khan A, Ling Z, Sharma M, Feng P, ALI G, SAIF I, WANG H, LI X, LIU P. Feed-additive of bioengineering strain with surface-displayed laccase degrades sulfadiazine in broiler manure and maintains intestinal flora structure[J]. Journal of Hazardous Materials, 2021, 406: 124440.
    [79] Chen X, Yang J, Ling Z, Zhou T, Zhou B, Wang H, Li X, Liu P. Gut Escherichia coli expressing Pb2+-adsorption protein reduces lead accumulation in grass carp, Ctenopharyngodon idellus[J]. Environmental Pollution, 2021, 276: 116634.
    [80] Liu M, Lu X, Khan A, Ling Z, Wang P, Tang Y, Liu P, Li X. Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides[J]. Journal of Hazardous Materials, 2019, 367: 35-42.
    [81] Misra CS, Sounderajan S, Apte SK. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans[J]. Journal of Hazardous Materials, 2021, 419: 126477.
    [82] ZHU N, ZHANG B, YU Q. Genetic engineering-facilitated assembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 22948-22957.
    [83] Wang Z, Ma J, Wang T, Qin C, Hu X, Mosa A, LING W. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: a review[J]. Chemosphere, 2023, 328: 138578.
    [84] lin j, ye w, xie m, seo d, luo j, wan y, van der bruggen B. Environmental impacts and remediation of dye-containing wastewater[J]. Nature Reviews Earth & Environment, 2023, 4: 785-803.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Xu, XU Wei, ZHOU Ningyi, DING Junmei. Bacterial surface display and research progress in applications of this technology in environmental remediation[J]. Microbiology China, 2024, 51(6): 1854-1872

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 31,2023
  • Adopted:March 04,2024
  • Online: June 07,2024
  • Published: June 20,2024
Article QR Code