Research progress in the demethylation mechanism of lignin biodegradation
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [69]
  • | | | |
  • Comments
    Abstract:

    Lignin is a heterogeneous aromatic biopolymer composed of diverse aromatic monomers linked by various types of chemical bonds, which make the efficient degradation and cost-effective transformation of lignin a formidable global issue. Recent studies have discover unique non-specific redox systems inherent in microorganisms and the metabolic capacity of microorganisms for degrading aromatic compounds, shedding light on lignin valorization. Given that most of lignin-derived aromatic monomers contain methoxy groups, demethylation emerges as a rate-limiting step in the metabolism of these compounds. This review offers an extensive summary of the latest studies about the biological and enzymatic mechanisms of demethylation during the biodegradation of lignin. Meanwhile, by examining exemplary studies on lignin valorization with novel aromatic demethylases, this paper highlights the pivotal role of understanding microbial demethylation mechanisms and mining new demethylases in lignin degradation and transformation.

    Reference
    [1] VIEIRA FR, MAGINA S, EVTUGUIN DV, BARROS-TIMMONS A. Lignin as a renewable building block for sustainable polyurethanes[J]. Materials, 2022, 15(17): 6182.
    [2] HUANG DL, LI RJ, XU P, LI T, DENG R, CHEN S, ZHANG Q. The cornerstone of realizing lignin value-addition: exploiting the native structure and properties of lignin by extraction methods[J]. Chemical Engineering Journal, 2020, 402: 126237.
    [3] FREUDENBERG K. Lignin: its constitution and formation from p-hydroxycinnamyl alcohols: lignin is duplicated by dehydrogenation of these alcohols; intermediates explain formation and structure[J]. Science, 1965, 148(3670): 595-600.
    [4] BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54: 519-546.
    [5] LI F, ZHAO YQ, XUE L, MA FY, DAI SY, XIE SX. Microbial lignin valorization through depolymerization to aromatics conversion[J]. Trends in Biotechnology, 2022, 40(12): 1469-1487.
    [6] LUBBERS RJM, DILOKPIMOL A, VISSER J, MÄKELÄ MR, HILDÉN KS, de VRIES RP. A comparison between the homocyclic aromatic metabolic pathways from plant-derived compounds by bacteria and fungi[J]. Biotechnology Advances, 2019, 37(7): 107396.
    [7] MALLINSON SJB, MACHOVINA MM, SILVEIRA RL, GARCIA-BORRÀS M, GALLUP N, JOHNSON CW, ALLEN MD, SKAF MS, CROWLEY MF, NEIDLE EL, HOUK KN, BECKHAM GT, DuBOIS JL, McGEEHAN JE. A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion[J]. Nature Communications, 2018, 9: 2487.
    [8] MASAI E, KATAYAMA Y, FUKUDA M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(1): 1-15.
    [9] 梁丛颖, 林璐. 环境微生物介导的木质素代谢及其资源化利用研究进展[J]. 微生物学通报, 2020, 47(10): 3380-3392.LIANG CY, LIN L. Environmental microorganisms driven lignin biodegradation and their roles in lignin utilization[J]. Microbiology China, 2020, 47(10): 3380-3392 (in Chinese).
    [10] WENG CH, PENG XW, HAN YJ. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis[J]. Biotechnology for Biofuels, 2021, 14(1): 84.
    [11] XIE SX, SYRENNE R, SUN S, YUAN JS. Exploration of Natural Biomass Utilization Systems (NBUS) for advanced biofuel: from systems biology to synthetic design[J]. Current Opinion in Biotechnology, 2014, 27: 195-203.
    [12] 赵一全, 张慧, 张晓昱, 谢尚县. 木质素的微生物解聚与高值转化[J]. 微生物学报, 2020, 60(12): 2717-2733.ZHAO YQ, ZHANG H, ZHANG XY, XIE SX. Microbial depolymerization and valorization of lignin[J]. Acta Microbiologica Sinica, 2020, 60(12): 2717-2733 (in Chinese).
    [13] XIE SX, SUN S, LIN FR, LI MZ, PU YQ, CHENG YB, XU B, LIU ZH, da COSTA SOUSA L, DALE BE, RAGAUSKAS AJ, DAI SY, YUAN JS. Mechanism-guided design of highly efficient protein secretion and lipid conversion for biomanufacturing and biorefining[J]. Advanced Science, 2019, 6(13): 1801980.
    [14] CAJNKO MM, OBLAK J, GRILC M, LIKOZAR B. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics[J]. Bioresource Technology, 2021, 340: 125655.
    [15] LEE S, KANG M, BAE JH, SOHN JH, SUNG BH. Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 209.
    [16] XIE SX, SUN QN, PU YQ, LIN FR, SUN S, WANG X, RAGAUSKAS AJ, YUAN JS. Advanced chemical design for efficient lignin bioconversion[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2215-2223.
    [17] CAI CG, XU ZX, ZHOU HR, CHEN ST, JIN MJ. Valorization of lignin components into gallate by integrated biological hydroxylation, O-demethylation, and aryl side-chain oxidation[J]. Science Advances, 2021, 7(36): eabg4585.
    [18] VANHOLME R, DEMEDTS B, MORREEL K, RALPH J, BOERJAN W. Lignin biosynthesis and structure[J]. Plant Physiology, 2010, 153(3): 895-905.
    [19] KUATSJAH E, ZAHN M, CHEN XY, KATO R, HINCHEN DJ, KONEV MO, KATAHIRA R, ORR C, WAGNER A, ZOU YK, HAUGEN SJ, RAMIREZ KJ, MICHENER JK, PICKFORD AR, KAMIMURA N, MASAI EJ, HOUK KN, McGEEHAN JE, BECKHAM GT. Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless deformylation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(4): e2212246120.
    [20] LIAO YH, KOELEWIJN SF, van den BOSSCHE G, van AELST J, van den BOSCH S, RENDERS T, NAVARE K, NICOLAÏ T, van AELST K, MAESEN M, MATSUSHIMA H, THEVELEIN JM, van ACKER K, LAGRAIN B, VERBOEKEND D, SELS BF. A sustainable wood biorefinery for low-carbon footprint chemicals production[J]. Science, 2020, 367(6484): 1385-1390.
    [21] BUGG TDH, AHMAD M, HARDIMAN EM, RAHMANPOUR R. Pathways for degradation of lignin in bacteria and fungi[J]. Natural Product Reports, 2011, 28(12): 1883-1896.
    [22] BUGG TDH, WILLIAMSON JJ, RASHID GMM. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass[J]. Current Opinion in Chemical Biology, 2020, 55: 26-33.
    [23] SUN ZH, FRIDRICH B, de SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization: toward new platform chemicals[J]. Chemical Reviews, 2018, 118(2): 614-678.
    [24] ZHAO C, XIE SX, PU YQ, ZHANG R, HUANG F, RAGAUSKAS AJ, YUAN JS. Synergistic enzymatic and microbial lignin conversion[J]. Green Chemistry, 2016, 18(5): 1306-1312.
    [25] BECKHAM GT, JOHNSON CW, KARP EM, SALVACHÚA D, VARDON DR. Opportunities and challenges in biological lignin valorization[J]. Current Opinion in Biotechnology, 2016, 42: 40-53.
    [26] WOLF ME, HINCHEN DJ, DuBOIS JL, McGEEHAN JE, ELTIS LD. Cytochromes P450 in the biocatalytic valorization of lignin[J]. Current Opinion in Biotechnology, 2022, 73: 43-50.
    [27] BLEEM A, KUATSJAH E, PRESLEY GN, HINCHEN DJ, ZAHN M, GARCIA DC, MICHENER WE, KÖNIG G, TORNESAKIS K, ALLEMANN MN, GIANNONE RJ, McGEEHAN JE, BECKHAM GT, MICHENER JK. Discovery, characterization, and metabolic engineering of Rieske non-heme iron monooxygenases for guaiacol O-demethylation[J]. Chem Catalysis, 2022, 2(8): 1989-2011.
    [28] KOHLER AC, MILLS MJL, ADAMS PD, SIMMONS BA, SALE KL. Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(16): E3205-E3214.
    [29] ELLIS ES, HINCHEN DJ, BLEEM A, BU LT, MALLINSON SJB, ALLEN MD, STREIT BR, MACHOVINA MM, DOOLIN QV, MICHENER WE, JOHNSON CW, KNOTT BC, BECKHAM GT, McGEEHAN JE, DuBOIS JL. Engineering a cytochrome P450 for demethylation of lignin-derived aromatic aldehydes[J]. JACS Au, 2021, 1(3): 252-261.
    [30] MACHOVINA MM, MALLINSON SJB, KNOTT BC, MEYERS AW, GARCIA-BORRÀS M, BU LT, GADO JE, OLIVER A, SCHMIDT GP, HINCHEN DJ, CROWLEY MF, JOHNSON CW, NEIDLE EL, PAYNE CM, HOUK KN, BECKHAM GT, McGEEHAN JE, DuBOIS JL. Enabling microbial syringol conversion through structure-guided protein engineering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13970-13976.
    [31] ELTIS LD, KARLSON U, TIMMIS KN. Purification and characterization of cytochrome P450RR1 from Rhodococcus rhodochrous[J]. European Journal of Biochemistry, 1993, 213(1): 211-216.
    [32] FETHEROLF MM, LEVY-BOOTH DJ, NAVAS LE, LIU J, GRIGG JC, WILSON A, KATAHIRA R, BECKHAM GT, MOHN WW, ELTIS LD. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25771-25778.
    [33] PRIEFERT H, RABENHORST J, STEINBÜCHEL A. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate[J]. Journal of Bacteriology, 1997, 179(8): 2595-2607.
    [34] CHEN HP, CHOW M, LIU CC, LAU A, LIU J, ELTIS LD. Vanillin catabolism in Rhodococcus jostii RHA1[J]. Applied and Environmental Microbiology, 2012, 78(2): 586-588.
    [35] SEGURA A, BÜNZ PV, D’ARGENIO DA, ORNSTON LN. Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter[J]. Journal of Bacteriology, 1999, 181(11): 3494-3504.
    [36] NAIDU D, RAGSDALE SW. Characterization of a three-component vanillate O-demethylase from Moorella thermoacetica[J]. Journal of Bacteriology, 2001, 183(11): 3276-3281.
    [37] ABE T, MASAI EJ, MIYAUCHI K, KATAYAMA Y, FUKUDA M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6[J]. Journal of Bacteriology, 2005, 187(6): 2030-2037.
    [38] PEREZ JM, KONTUR WS, GEHL C, GILLE DM, MA YJ, NILES AV, UMANA G, DONOHUE TJ, NOGUERA DR. Redundancy in aromatic O-demethylation and ring opening reactions in Novosphingobium aromaticivorans and their impact in the metabolism of plant derived phenolics[J]. Applied and Environmental Microbiology, 2021, 87(8): e02794-e02720.
    [39] JOHNSON CW, ABRAHAM PE, LINGER JG, KHANNA P, HETTICH RL, BECKHAM GT. Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440[J]. Metabolic Engineering Communications, 2017, 5: 19-25.
    [40] BELL SG, XU F, FORWARD I, BARTLAM M, RAO ZH, WONG LL. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris[J]. Journal of Molecular Biology, 2008, 383(3): 561-574.
    [41] YOSHIKATA T, SUZUKI K, KAMIMURA N, NAMIKI M, HISHIYAMA S, ARAKI T, KASAI D, OTSUKA Y, NAKAMURA M, FUKUDA M, KATAYAMA Y, MASAI EJ. Three-component O-demethylase system essential for catabolism of a lignin-derived biphenyl compound in Sphingobium sp. strain SYK-6[J]. Applied and Environmental Microbiology, 2014, 80(23): 7142-7153.
    [42] VENTURI V, ZENNARO F, DEGRASSI G, OKEKE BC, BRUSCHI CV. Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358[J]. Microbiology, 1998, 144(4): 965-973.
    [43] NISHIMURA M, ISHIYAMA D, DAVIES J. Molecular cloning of Streptomyces genes encoding vanillate demethylase[J]. Bioscience, Biotechnology, and Biochemistry, 2006, 70(9): 2316-2319.
    [44] BELL SG, TAN ABH, JOHNSON EOD, WONG LL. Selective oxidative demethylation of veratric acid to vanillic acid by CYP199A4 from Rhodopseudomonas palustris HaA2[J]. Molecular BioSystems, 2010, 6(1): 206-214.
    [45] BELL SG, HOSKINS N, XU F, CAPROTTI D, RAO ZH, WONG LL. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris[J]. Biochemical and Biophysical Research Communications, 2006, 342(1): 191-196.
    [46] GARCÍA-HIDALGO J, RAVI K, KURÉ LL, LIDÉN G, GORWA-GRAUSLUND M. Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation[J]. AMB Express, 2019, 9(1): 34.
    [47] FERRARO DJ, GAKHAR L, RAMASWAMY S. Rieske business: structure-function of Rieske non-heme oxygenases[J]. Biochemical and Biophysical Research Communications, 2005, 338(1): 175-190.
    [48] ERICKSON E, BLEEM A, KUATSJAH E, WERNER AZ, DuBOIS JL, McGEEHAN JE, ELTIS LD, BECKHAM GT. Critical enzyme reactions in aromatic catabolism for microbial lignin conversion[J]. Nature Catalysis, 2022, 5: 86-98.
    [49] ARAKI T, TANATANI K, KAMIMURA N, OTSUKA Y, YAMAGUCHI M, NAKAMURA M, MASAI EJ. The syringate O-demethylase gene of Sphingobium sp. strain SYK-6 is regulated by DesX, while other vanillate and syringate catabolism genes are regulated by DesR[J]. Applied and Environmental Microbiology, 2020, 86(22): e01712-e01720.
    [50] HARADA A, KAMIMURA N, TAKEUCHI K, YU HY, MASAI EJ, SENDA T. The crystal structure of a new O-demethylase from Sphingobium sp. strain SYK-6[J]. The FEBS Journal, 2017, 284(12): 1855-1867.
    [51] KWEON O, KIM SJ, BAEK S, CHAE JC, ADJEI MD, BAEK DH, KIM YC, CERNIGLIA CE. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases[J]. BMC Biochemistry, 2008, 9: 11.
    [52] LI SY, DU L, BERNHARDT R. Redox partners: function modulators of bacterial P450 enzymes[J]. Trends in Microbiology, 2020, 28(6): 445-454.
    [53] MASAI EJ, SASAKI M, MINAKAWA Y, ABE T, SONOKI T, MIYAUCHI K, KATAYAMA Y, FUKUDA M. A novel tetrahydrofolate-dependent O-demethylase gene is essential for growth of Sphingomonas paucimobilis SYK-6 with syringate[J]. Journal of Bacteriology, 2004, 186(9): 2757-2765.
    [54] JUNG ST, LAUCHLI R, ARNOLD FH. Cytochrome P450: taming a wild type enzyme[J]. Current Opinion in Biotechnology, 2011, 22(6): 809-817.
    [55] McINTOSH JA, FARWELL CC, ARNOLD FH. Expanding P450 catalytic reaction space through evolution and engineering[J]. Current Opinion in Chemical Biology, 2014, 19: 126-134.
    [56] KARLSON U, DWYER DF, HOOPER SW, MOORE ER, TIMMIS KN, ELTIS LD. Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoate[J]. Journal of Bacteriology, 1993, 175(5): 1467-1474.
    [57] XUE L, ZHAO YQ, LI L, RAO XR, CHEN XJ, MA FY, YU HB, XIE SX. A key O-demethylase in the degradation of guaiacol by Rhodococcus opacus PD630[J]. Applied and Environmental Microbiology, 2023, 89(10): e0052223.
    [58] NELSON DR. Cytochrome P450 diversity in the tree of life[J]. Biochimica et Biophysica Acta Proteins and Proteomics, 2018, 1866(1): 141-154.
    [59] KOVALEVA EG, LIPSCOMB JD. Versatility of biological non-heme Fe(II) centers in oxygen activation reactions[J]. Nature Chemical Biology, 2008, 4: 186-193.
    [60] BRUNEL F, DAVISON J. Cloning and sequencing of Pseudomonas genes encoding vanillate demethylase[J]. Journal of Bacteriology, 1988, 170(10): 4924-4930.
    [61] KAMIMURA N, TAKAHASHI K, MORI K, ARAKI T, FUJITA M, HIGUCHI Y, MASAI EJ. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism[J]. Environmental Microbiology Reports, 2017, 9(6): 679-705.
    [62] LANFRANCHI E, TRAJKOVIĆ M, BARTA K, de VRIES JG, JANSSEN DB. Exploring the selective demethylation of aryl methyl ethers with a Pseudomonas rieske monooxygenase[J]. Chembiochem: a European Journal of Chemical Biology, 2019, 20(1): 118-125.
    [63] 湚搀?椀琀猀?瀀栀愀爀洀愀挀漀氀漀最椀挀愀氀?瀀漀琀攀渀琀椀愀氀嬀?崀???匀刀一?倀栀愀爀洀愀挀漀氀漀最礀??? ????? ????????????戀爀?嬀??崀?伀吀匀唀???夀??一????唀刀?????匀??????刀?????匀唀???唀刀???????匀??????伀??刀??匀????吀?夀????夀???昀昀椀挀椀攀渀琀?瀀爀漀搀甀挀琀椀漀渀?漀昀???瀀礀爀漀渀攀??????搀椀挀愀爀戀漀砀礀氀椀挀?愀挀椀搀?愀猀?愀?渀漀瘀攀氀?瀀漀氀礀洀攀爀?戀愀猀攀搀?洀愀琀攀爀椀愀氀?昀爀漀洀?瀀爀漀琀漀挀愀琀攀挀栀甀愀琀攀?戀礀?洀椀挀爀漀戀椀愀氀?昀甀渀挀琀椀漀渀嬀?崀???瀀瀀氀椀攀搀??椀挀爀漀戀椀漀氀漀最礀?愀渀搀??椀漀琀攀挀栀渀漀氀漀最礀???  ??????????? ???????戀爀?嬀??崀?刀伀匀?一????????刀刀??伀?倀??倀伀?????伀一??????攀洀攀琀栀礀氀愀琀椀漀渀?漀昀?瘀愀渀椀氀氀椀挀?愀挀椀搀?戀礀?爀攀挀漀洀戀椀渀愀渀琀??椀最??椀渀?愀?漀渀攀?瀀漀琀?挀漀昀愀挀琀漀爀?爀攀最攀渀攀爀愀琀椀漀渀?猀礀猀琀攀洀嬀?崀???愀琀愀氀礀猀椀猀?匀挀椀攀渀挀攀??愀洀瀀??吀攀挀栀渀漀氀漀最礀??? ??????????????????????戀爀?嬀??崀?倀夀一??????一?刀?刀伀匀匀?????????刀??????嘀嘀???????伀伀??刀????匀?????吀????????刀吀?一?嘀?????渀?攀渀最椀渀攀攀爀攀搀??爀漀??瀀爀漀琀攀椀渀?搀攀最爀愀搀愀琀椀漀渀?愀瀀瀀爀漀愀挀栀?昀漀爀?椀渀挀爀攀愀猀攀搀??椀?挀椀猀??椀???椀?挀椀猀??椀??洀甀挀漀渀椀挀?愀挀椀搀?戀椀漀猀礀渀琀栀攀猀椀猀?椀渀??椀?匀愀挀挀栀愀爀漀洀礀挀攀猀?挀攀爀攀瘀椀猀椀愀攀??椀?嬀?崀???瀀瀀氀椀攀搀?愀渀搀??渀瘀椀爀漀渀洀攀渀琀愀氀??椀挀爀漀戀椀漀氀漀最礀??? ????????????攀 ? ???攀 ? ????戀爀?嬀??崀?圀唀?圀????唀吀吀??吀??嘀?刀??一??????唀??匀??????一???一匀?一?????伀儀唀??愀挀甀琀攀?????匀?一???匀???椀最渀椀渀?瘀愀氀漀爀椀稀愀琀椀漀渀??琀眀漀?栀礀戀爀椀搀?戀椀漀挀栀攀洀椀挀愀氀?爀漀甀琀攀猀?昀漀爀?琀栀攀?挀漀渀瘀攀爀猀椀漀渀?漀昀?瀀漀氀礀洀攀爀椀挀?氀椀最渀椀渀?椀渀琀漀?瘀愀氀甀攀?愀搀搀攀搀?挀栀攀洀椀挀愀氀猀嬀?崀??匀挀椀攀渀琀椀昀椀挀?刀攀瀀漀爀琀猀??? ?????????? ??戀爀?嬀??崀?一獧???????栀腧????晾聛??????皉??顣?葎鑶??喏孜?崀??????畓???? ???????????????????????夀?????一??匀??夀?一???堀???瀀瀀氀椀挀愀琀椀漀渀?瀀爀漀最爀攀猀猀?漀昀?漀洀椀挀猀?琀攀挀栀渀漀氀漀最礀?漀渀?氀椀最渀椀渀?搀攀最爀愀搀椀渀最?攀渀稀礀洀攀?猀礀猀琀攀洀?洀椀渀椀渀最嬀?崀???漀漀搀?愀渀搀??攀爀洀攀渀琀愀琀椀漀渀??渀搀甀猀琀爀椀攀猀??? ?????????????????????椀渀??栀椀渀攀猀攀???戀爀?嬀??崀?吀????伀刀??匀???伀??一????匀??吀栀攀?爀漀氀攀?漀昀?挀礀琀漀挀栀爀漀洀攀猀?倀??? ?椀渀?愀搀爀攀渀愀氀?猀琀攀爀漀椀搀漀最攀渀攀猀椀猀嬀?崀??吀爀攀渀搀猀?椀渀??椀漀挀栀攀洀椀挀愀氀?匀挀椀攀渀挀攀猀???????????????????????戀爀?嬀??崀?謀啛???殚???镔???辍獹??杹?????犀?偽?? 瘀蒑?葾?鼰??鑎??癸?喏孜?崀????極晲????? ? ???????????????????匀伀一??娀????伀?堀??圀唀?????唀??倀??儀?一?????匀琀爀甀挀琀甀爀攀??昀甀渀挀琀椀漀渀??愀渀搀?愀瀀瀀氀椀挀愀琀椀漀渀?漀昀?挀礀琀漀挀栀爀漀洀攀?倀?? ?攀渀稀礀洀攀猀嬀?崀???椀挀爀漀戀椀漀氀漀最礀??栀椀渀愀??? ? ????????????????????椀渀??栀椀渀攀猀攀???戀爀?嬀? 崀??唀?一??刀?????倀???礀琀漀挀栀爀漀洀攀?倀?? ?爀攀猀攀愀爀挀栀?愀渀搀??椀?吀栀攀??漀甀爀渀愀氀?漀昀??椀漀氀漀最椀挀愀氀??栀攀洀椀猀琀爀礀??椀?嬀?崀??吀栀攀??漀甀爀渀愀氀?漀昀??椀漀氀漀最椀挀愀氀??栀攀洀椀猀琀爀礀??? ???????????????????? ??戀爀?嬀??崀??唀?倀?刀?????嘀?一匀?刀??倀刀?吀娀???????刀??一?吀?????唀刀一伀嘀????刀伀一一???刀??刀?伀??吀唀一夀?匀唀嘀唀一??伀伀???????吀?匀?刀??????????愀挀甀琀攀????????倀伀吀?倀?一?伀?????刀?????一???????夀?刀?????伀???匀?????????刀???????伀圀??????刀伀??刀??倀?刀???匀????一??伀?伀嘀?匀?????一?刀??????刀?????????吀??攀琀?愀氀???椀最栀氀礀?愀挀挀甀爀愀琀攀?瀀爀漀琀攀椀渀?猀琀爀甀挀琀甀爀攀?瀀爀攀搀椀挀琀椀漀渀?眀椀琀栀??氀瀀栀愀?漀氀搀嬀?崀??一愀琀甀爀攀??? ??????????????????戀爀?嬀??崀?夀?一??????娀??伀????圀唀?夀圀???栀攀洀椀挀愀氀?猀礀渀琀栀攀猀椀猀?愀渀搀?戀椀漀氀漀最椀挀愀氀?昀甀渀挀琀椀漀渀?漀昀?氀椀瀀椀搀愀琀攀搀?瀀爀漀琀攀椀渀猀嬀?崀??吀漀瀀椀挀猀?椀渀??甀爀爀攀渀琀??栀攀洀椀猀琀爀礀??? ??????????????????戀爀?嬀??崀???????刀????刀????一?嘀刀??愀挀甀琀攀?吀??伀嘀??愀挀甀琀攀??嘀??倀??伀一??夀愀挀甀琀攀?伀嘀??愀挀甀琀攀???????娀???刀?嘀????刀???????一娀?一?????刀?倀??伀吀夀?倀???????攀洀戀爀愀渀攀?愀琀琀愀挀栀攀搀?洀愀洀洀愀氀椀愀渀?挀礀琀漀挀栀爀漀洀攀猀?倀?? ??愀渀?漀瘀攀爀瘀椀攀眀?漀昀?琀栀攀?洀攀洀戀爀愀渀攀?猠?攀昀昀攀挀琀猀?漀渀?猀琀爀甀挀琀甀爀攀??搀爀甀最?戀椀渀搀椀渀最??愀渀搀?椀渀琀攀爀愀挀琀椀漀渀猀?眀椀琀栀?爀攀搀漀砀?瀀愀爀琀渀攀爀猀嬀?崀???漀甀爀渀愀氀?漀昀??渀漀爀最愀渀椀挀??椀漀挀栀攀洀椀猀琀爀礀??? ?????????????????, JOHNSON CW, BECKHAM GT. Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid[J]. Metabolic Engineering, 2021, 65: 111-122.
    [77] MORAWSKI B, SEGURA A, ORNSTON LN. Substrate range and genetic analysis of Acinetobacter vanillate demethylase[J]. Journal of Bacteriology, 2000, 182(5): 1383-1389.
    [78] ALI KHAN B, MAHMOOD T, MENAA F, SHAHZAD Y, YOUSAF AM, HUSSAIN T, RAY SD. New perspectives on the efficacy of gallic acid in cosmetics & nanocosmeceuticals[J]. Current Pharmaceutical Design, 2018, 24(43): 5181-5187.
    [79] KAMIMURA N, GOTO T, TAKAHASHI K, KASAI D, OTSUKA Y, NAKAMURA M, KATAYAMA Y, FUKUDA M, MASAI E. A bacterial aromatic aldehyde dehydrogenase critical for the efficient catabolism of syringaldehyde[J]. Scientific Reports, 2017, 7: 44422.
    [80] UPADHYAY P, LALI A. Protocatechuic acid production from lignin-associated phenolics[J]. Preparative Biochemistry & Biotechnology, 2021, 51(10): 979-984.
    [81] OKAI N, MASUDA T, TAKESHIMA Y, TANAKA K, YOSHIDA KI, MIYAMOTO M, OGINO C, KONDO A. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase[J]. AMB Express, 2017, 7(1): 130.
    [82] KAKKAR S, BAIS S. A review on protocatechuic acid a
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Yanling, XUE Le, LU Peng, LI Andong, LIAO Qingzhao, CHEN Xianrui, XIAO Ning, XIE Shangxian. Research progress in the demethylation mechanism of lignin biodegradation[J]. Microbiology China, 2024, 51(6): 1834-1853

Copy
Share
Article Metrics
  • Abstract:448
  • PDF: 828
  • HTML: 615
  • Cited by: 0
History
  • Received:January 15,2024
  • Adopted:March 19,2024
  • Online: June 07,2024
  • Published: June 20,2024
Article QR Code