Effect of Rhizobium sp. PP3 on the antioxidant system of Pongamia pinnata under nickel stress
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • | | | |
  • Comments
    Abstract:

    [Background] The antioxidant system plays an important role in plant tolerance to stress, and whether rhizobia affect the antioxidant system of legumes to improve plant tolerance to stress remains unclear. [Objective] Pongamia pinnata with strong stress tolerance was selected as the representative of legumes in this study, and the pot experiments of inoculating Rhizobium sp. PP3 to P. pinnata under nickel stress were performed. [Methods] The activities of four antioxidant enzymes and the content of four non-enzymatic antioxidants in the roots, stems and leaves of P. pinnata in different treatments were determined by the enzyme linked immunosorbent assay. [Results] The activities of antioxidant enzymes in P. pinnata followed the trend of superoxide dismutase (SOD)>peroxidase (POD)>catalase (CAT)>glutathione reductase (GR), and the content non-enzymatic antioxidants was in the order of glutathione (GSH)>flavonoid (FLA)>oligomeric proantho cyanidins (OPC)>ascorbic acid (AsA). In the case of no nitrogen supply and 40 mg/L Ni2+ stress, Rhizobium sp. PP3 increased the POD activity in the stems by 61.8%, and the SOD, GR, and CAT activities in the leaves by 5.7%, 23.6%, and 36.1%, respectively. Under the stress of nitrogen and 40 mg/L Ni2+, Rhizobium sp. PP3 increased the content of GSH, FLA, and OPC in the roots by 55.9%, 61.6%, and 38.6%, respectively, and the GSH content in the leaves by 14.8% under the stress of 40 mg/L Ni2+. [Conclusion] Rhizobia had significant effects on the four antioxidant enzymes and non-enzymatic antioxidants in P. pinnata, while the effects on antioxidant enzymes and antioxidants varied in different tissues. The results indicate that rhizobia regulate the antioxidant system of P. pinnata in response to nickel stress, and they play a role in strengthening the stress tolerance of P. pinnata in the nickel-contaminated soil.

    Reference
    [1] 全国土壤污染状况调查公报(2014-04-17)[R]. 2014(6):8-10. https://www.gov.cn/foot/2014-04/17/content_2661768. htm.Report on the national general survey of soil contamination (2014-04-17)[R]. 2014(6):8-10. https://www. gov.cn/foot/2014-04/17/content_2661768.htm (in Chinese).
    [2] SHAHZAD B, TANVEER M, REHMAN A, CHEEMA SA, FAHAD S, REHMAN S, SHARMA A. Nickel; whether toxic or essential for plants and environment-a review[J]. Plant Physiology and Biochemistry, 2018, 132:641-651.
    [3] WANG Q, XIONG D, ZHAO P, YU X, TU B, WANG G. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17[J]. Journal of Applied Microbiology, 2011, 111(5):1065-1074.
    [4] ABDELGAWAD H, ZINTA G, HAMED BA, SELIM S, BEEMSTER G, HOZZEIN WN, WADAAN M, ASARD H, ABUELSOUD W. Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environmental Pollution, 2020, 258:113705.
    [5] 蒋喜艳, 张述习, 尹西翔, 张少鹏, 李汀, 王利红. 土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报, 2021, 16(6):150-160.JIANG XY, ZHANG SX, YIN XX, ZHANG SP, LI T, WANG LH. Research progress on heavy metals pollution and its control in soil-crop system[J]. Asian Journal of Ecotoxicology, 2021, 16(6):150-160(in Chinese).
    [6] GALL JE, BOYD RS, RAJAKARUNA N. Transfer of heavy metals through terrestrial food webs:a review[J]. Environmental Monitoring and Assessment, 2015, 187(4):201.
    [7] CAO HM, YANG YZ, HUANG BY, ZHANG YZ, WU Y, WAN Z, MA L. A cross-sectional study of the association between heavy metals and pan-cancers associated with sex hormones in NHANES 1999–2018[J]. Environmental Science and Pollution Research, 2023, 30(21):61005-61017.
    [8] MØLLER IM, JENSEN PE, HANSSON A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology, 2007, 58:459-481.
    [9] YU J, CANG J, LU QW, FAN B, XU QH, LI WN, WANG XT. ABA enhanced cold tolerance of wheat 'dn1' via increasing ROS scavenging system[J]. Plant Signaling & Behavior, 2020, 15(8):1780403.
    [10] KOLUPAEV YE, KARPETS YV, KABASHNIKOVA LF. Antioxidative system of plants:cellular compartmentalization, protective and signaling functions, mechanisms of regulation (review)[J]. Applied Biochemistry and Microbiology, 2019, 55(5):441-459.
    [11] AHMAD P, JALEEL CA, SALEM MA, NABI G, SHARMA S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress[J]. Critical Reviews in Biotechnology, 2010, 30(3):161-175.
    [12] VALKO M, RHODES CJ, MONCOL J, IZAKOVIC M, MAZUR M. Free radicals, metals and antioxidants in oxidative stress-induced cancer[J]. Chemico-Biological Interactions, 2006, 160(1):1-40.
    [13] 周希琴, 莫灿坤. 植物重金属胁迫及其抗氧化系统[J]. 新疆教育学院学报, 2003, 19(2):103-108. ZHOU XQ, MO CK. Heavy metal stress and its antioxidant system in plants[J]. Journal of Xinjiang Institute of Education, 2003, 19(2):103-108(in Chinese).
    [14] 赵叶舟, 王浩铭, 汪自强. 豆科植物和根瘤菌在生态环境中的地位和作用[J]. 农业环境与发展, 2013, 30(4):7-12.ZHAO YZ, WANG HM, WANG ZQ. The role of leguminous plants and Rhizobium in ecological environment[J]. Agro-Environment and Development, 2013, 30(4):7-12(in Chinese).
    [15] MA Y, RAJKUMAR M, LUO YM, FREITAS H. Inoculation of endophytic bacteria on host and non-host plants—effects on plant growth and Ni uptake[J]. Journal of Hazardous Materials, 2011, 195:230-237.
    [16] ABD-ALLA MH, BASHANDY SR, BAGY MK, ELSADK EL-ENANY AW. Rhizobium tibeticum activated with a mixture of flavonoids alleviates nickel toxicity in symbiosis with fenugreek (Trigonella foenum graecum L.)[J]. Ecotoxicology, 2014, 23(5):946-959.
    [17] MITRA S, GHOSE A, GUJRE N, SENTHILKUMAR S, BORAH P, PAUL A, RANGAN L. A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata and Mesua ferrea[J]. Biomass and Bioenergy, 2021, 151:106173.
    [18] YU XM, KANG X, LI YM, CUI YL, TU WG, SHEN T, YAN M, GU YF, ZOU LK, MA MG, XIANG QJ, ZHAO K, LIANG YY, ZHANG XP, CHEN Q. Rhizobia population was favoured during in situ phytoremediation of vanadium-titanium magnetite mine tailings dam using Pongamia pinnata[J]. Environmental Pollution, 2019, 255:113167.
    [19] SCOTT PT, PREGELJ L, CHEN N, HADLER JS, DJORDJEVIC MA, GRESSHOFF PM. Pongamia pinnata:an untapped resource for the biofuels industry of the future[J]. BioEnergy Research, 2008, 1(1):2-11.
    [20] SHEN T, JIN RM, YAN J, CHENG XR, ZENG L, CHEN Q, GU YF, ZOU LK, ZHAO K, XIANG QJ, PENTTINEN P, MA MG, LI SC, ZOU T, YU XM. Study on diversity, nitrogen-fixing capacity, and heavy metal tolerance of culturable Pongamia pinnata rhizobia in the vanadium-titanium magnetite tailings[J]. Frontiers in Microbiology, 2023, 14:1078333.
    [21] PRAKAMHANG J, TITTABUTR P, BOONKERD N, TEAMTISONG K, UCHIUMI T, ABE M, TEAUMROONG N. Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application[J]. Applied Soil Ecology, 2015, 85:38-49.
    [22] YUAN JC, LIU XX, ZHAO H, WANG Y, WEI X, WANG P, ZHAN JJ, LIU LS, LI FG, GE XY. GhRCD1 regulates cotton somatic embryogenesis by modulating the GhMYC3-GhMYB44-GhLBD18 transcriptional cascade[J]. New Phytologist, 2023, 240(1):207-223.
    [23] 李文誉, 李德明. 盐碱及重金属对植物生长发育的影响[J]. 北方园艺, 2010(8):221-224.LI WY, LI DM. Effects of salinization and heavy metals stress on plant growth and development[J]. Northern Horticulture, 2010(8):221-224(in Chinese).
    [24] MAJEED A, AMJAD M, IMRAN M, MURTAZA B, NAEEM MA, JAWAD H, QAISRANI SA, AKHTAR SS. Iron enriched quinoa biochar enhances Nickel phytoremediation potential of Helianthus annuus L. by its immobilization and attenuation of oxidative stress:implications for human health[J]. International Journal of Phytoremediation, 2023, 25(13):1830-1843.
    [25] ZHOU XF, CHEN SL, WU H, YANG Y, XU HW. Biochemical and proteomics analyses of ant楩?剸桩楤穡潮扴椠略浮?灹業獥楳??楥??慡湬搠??楥?佰捯桴牥潮扴慩捡瑬攠牳楴畲浥??椠???楥?灡獮散略搠潩杮爠椼杩渾潒湨敯湤獯敤??楤?孯?崠???捹潳瑡潮硴楨捵潭氼漯杩社?慐湡摬??湊癝椮爠潂湩浯敬湯瑧慹氠?卩慲晥散瑴礬?′日?祝???有ㄨ????木代???r>[26] LÓPEZ CM, ALSEEKH S, TORRALBO F, RIVAS FJM, FERNIE AR, AMIL-RUIZ F, ALAMILLO JM. Transcriptomic and metabolomic analysis reveals that symbiotic nitrogen fixation enhances drought resistance in common bean[J]. Journal of Experimental Botany, 2023, 74(10):3203-3219.
    [27] JACH ME, SAJNAGA E, ZIAJA M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils[J]. Biology, 2022, 11(5):676.
    [28] MOTAMEDI M, ZAHEDI M, KARIMMOJENI H, MOTAMEDI H, MASTINU A. Effect of rhizosphere bacteria on antioxidant enzymes and some biochemical characteristics of Medicago sativa L. subjected to herbicide stress[J]. Acta Physiologiae Plantarum, 2022, 44(8):1-12.
    [29] HUSNA H, HUSSAIN A, SHAH M, HAMAYUN M, LQBAL A, QADIR M, ASIM S, LEE IJ. Stemphylium lycopersici and Stemphylium solani improved antioxidant system of soybean under chromate stress[J]. Frontiers in Microbiology, 2022, 13:1001847.
    [30] AHMAD P, JALEEL CA, AZOOZ MM, NABI G. Generation of ROS and non-enzymatic antioxidants during abiotic stress in plants[J]. Botany Research International, 2009, 2(1):11-20.
    [31] 韩蕾蕾, 王红霞, 李阳, 张乐乐, 袁祖丽. 丛枝真菌调节类黄酮和NO的水平减轻镉胁迫对小麦幼苗的氧化伤害研究[J]. 河南农业大学学报, 2021, 55(2):221-226.HAN LL, WANG HX, LI Y, ZHANG LL, YUAN ZL. Arbuscular mycorrhizal fungi alleviate oxidative damage by regulating the levels of flavonoids and NO in wheat seedling under cadmium stress condition[J]. Journal of Henan Agricultural University, 2021, 55(2):221-226(in Chinese).
    [32] GILL SS, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant physiology and biochemistry, 2010, 48(12):909-930.
    [33] SHOAIB M, HUSSAIN S, CHENG XR, CUI YL, LIU H, CHEN Q, MA MG, GU YF, ZHAO K, XIANG QJ, ZHOU J, LIU JH, LI SC, ZOU T, YU XM. Synergistic anti-oxidative effects of Pongamia pinnata against nickel mediated by <�
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIN Ruimin, HAO Sidi, DONG Guanyong, YAN Jing, CHENG Xiran, CHEN Qiang, YU Xiumei. Effect of Rhizobium sp. PP3 on the antioxidant system of Pongamia pinnata under nickel stress[J]. Microbiology China, 2024, 51(5): 1626-1640

Copy
Share
Article Metrics
  • Abstract:143
  • PDF: 602
  • HTML: 281
  • Cited by: 0
History
  • Received:August 30,2023
  • Adopted:November 20,2023
  • Online: May 09,2024
  • Published: May 20,2024
Article QR Code