Mechanism of Bacillus subtilis J-15 secondary metabolites in inhibiting Saccharomyces cerevisiae: based on transcriptomics
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • | | | |
  • Comments
    Abstract:

    [Background] Fungal diseases have gradually become a major factor restricting the crop production in China, and thus it is urgent to develop antifungal agents for disease prevention and control. [Objective] To investigate the mechanism of Bacillus subtilis J-15 secondary metabolites (SMs) in inhibiting fungal growth and development at the molecular level, so as to provide a theoretical basis for their application in fungal disease control. [Methods] The cell viability of Saccharomyces cerevisiae S288C treated with SMs was measured, and the cell necrosis was detected by flow cytometry. Transcriptome sequencing was performed to analyze the effects of SMs on the gene expression in S. cerevisiae, and real-time fluorescence quantitative PCR was employed to verify the results. [Results] SMs caused nuclear membrane lysis, DNA diffusion, and cell necrosis of S. cerevisiae S288C in a time-dependent manner. A total of 1 627 differentially expressed genes were screened out after the treatment with SMs for 12 h, including 851 up-regulated genes and 776 down-regulated genes. A total of 512 genes were differentially expressed after the treatment with SMs for 24 h, including 300 up-regulated genes and 212 down-regulated genes. The differentially expressed genes were involved in multiple pathways such as autophagy, sugar, lipid, and amino acid metabolism, cell wall synthesis, and cell cycle. [Conclusion] The findings provide an experimental basis for revealing the mechanism of SMs in inhibiting fungal growth and a theoretical basis for the application of SMs in the prevention and control of crop fungal diseases.

    Reference
    [1] WULF BB, HORVATH DM, WARD ER. Improving immunity in crops: new tactics in an old game[J]. Current Opinion in Plant Biology, 2011, 14(4): 468-476.
    [2] 李凯, 袁鹤. 植物病害生物防治概述[J]. 山西农业科学, 2012, 40(7): 807-810. LI K, YUAN H. Review on biological control of plant diseases[J]. Journal of Shanxi Agricultural Sciences, 2012, 40(7): 807-810(in Chinese).
    [3] 李怡洁, 杨佐忠. 枯草芽孢杆菌主要作用机制与应用研究进展[J]. 四川林业科技, 2019, 40(4): 126-130. LI YJ, YANG ZZ. Advances in researches on main action mechanism and application of Bacillus subtilis[J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(4): 126-130(in Chinese).
    [4] 王晓琼, 毕秀芳, 谢晓凤, 邢亚阁, 李明元. 伊枯草菌素A对草莓腐败菌的抑制效果研究[J]. 天然产物研究与开发, 2020, 32(11): 1889-1895. WANG XQ, BI XF, XIE XF, XING YG, LI MY. Antibacterial effect of iturin A on strawberry spoilage mold[J]. Natural Product Research and Development, 2020, 32(11): 1889-1895(in Chinese).
    [5] 朱华珺, 周瑚, 任佐华, 刘二明. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J].中国水稻科学, 2020, 34(5): 470-478. ZHU HJ, ZHOU H, REN ZH, LIU EM. Extracellular antimicrobial substances produced by Bacillus subtilis JN005 and its control efficacy on rice leaf blast[J]. Chinese Journal of Rice Science, 2020, 34(5): 470-478(in Chinese).
    [6] TIMMUSK S, GRANTCHAROVA N, Wagner EGH. Paenibacillus polymyxa invades plant roots and forms biofilms[J]. Applied and Environmental Microbiology, 2005, 71(11): 7292-7300.
    [7] DOMÍNGUEZ Á, MUÑOZ E, CORDERO M, MARTÍNEZ JP, VIÑAS M. Transcriptomics as a tool to discover new antibacterial targets[J]. Biotechnology Letters, 2017, 39(6): 819-828.
    [8] 叶晗, 李啸, 张小龙, 肖泽涛, 许超群, 黄聪. 基于转录组学分析的丙酸钙对酿酒酵母的抑菌机制[J]. 微生物学通报, 2021, 48(2): 437-448. Ye H, Li X, Zhang XL, Xiao ZT, Xu CQ, Huang C. Antimicrobial mechanism of calcium propionate on Saccharomyces cerevisiae based on transcriptomics analysis[J]. Microbiology China, 2021, 48(2): 437-448(in Chinese).
    [9] Kubo K, Itto-Nakama K, Ohnuki S, Yashiroda Y, Li SC, Kimura H, Kawamura Y, Shimamoto Y, Tominaga KI, Yamanaka D, Adachi Y, Takashima S, Noda Y, Boone C, Ohya Y. Jerveratrum-type steroidal alkaloids inhibit β-1,6-glucan biosynthesis in fungal cell walls[J]. Microbiol Spectrum, 2022, 10(1): e0087321.
    [10] GRANEK JA, MURRAY D, KAYRKÇI Ö, MAGWENE PM. The genetic architecture of biofilm formation in a clinical isolate of Saccharomyces cerevisiae[J]. Genetics, 2013, 193(2): 587-600.
    [11] 曾燕. 以酿酒酵母为模式真菌初探吩嗪-1-羧酸杀抑真菌的机理[D]. 南京: 南京农业大学硕士学位论文, 2013. ZENG Y. Preliminary studies on the antimicrobial mechanism of phenazine-1-carboxylic acid (PCA) on fungi through model organism Saccharomyces cerevisiae[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2013(in Chinese).
    [12] 郭娜. 呋喃喹啉类生物碱白鲜碱体外抗真菌活性及作用机制研究[D].长春: 吉林大学博士学位论文, 2009. GUO N. Study on the in vitro antifungal activities and actions mechanism of furoquinoline alkaloid dictamnine[D]. Changchun: Doctoral Dissertation of Jilin University, 2009(in Chinese).
    [13] LIESBETH D. Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research?[J]. Drug Resistance Updates, 2019, 42: 22-34.
    [14] 赵君洁, 曾卫军, 李艳红, 葛风伟, 杜钰, 袁琳琳, 赵歉歉, 王敏, 谢红桃, 白若翔, 韩生成, 赵和平, 赵惠新. 大丽轮枝菌拮抗芽孢菌株的分离、鉴定及两株菌抑菌特性研究[J]. 北京师范大学学报(自然科学版), 2017, 53(3): 294-300. ZHAO JJ, ZENG WJ, LI YH, GE FW, DU Y, YUAN LL, ZHAO QQ, WANG M, XIE HT, BAI RX, HAN SC, ZHAO HP, ZHAO HX. Isolation and identification of antagonistic Bacillus spp. against Verticillium dahliae: the antibacterial properties of two strains[J]. Journal of Beijing Normal University (Natural Science Edition), 2017, 53(3): 294-300(in Chinese).
    [15] 吴梦君, 杨启林, 李艳红, 葛风伟, 赵歉歉, 袁琳琳, 宁焕宸, 陈忠宜, 李金玉, 赵惠新. BS-Z15代谢产物防治棉花黄萎病的作用及对棉花生长的影响[J]. 分子植物育种, 2019, 17(24): 8237-8244. WU MJ, YANG QL, LI YH, GE FW, ZHAO QQ, YUAN LL, NING HC, CHEN ZY, LI JY, ZHAO HX. Effect of BS-Z15 metabolites on cotton Verticillium wilt prevention and cotton growth[J]. Molecular Plant Breeding, 2019, 17(24): 8237-8244(in Chinese).
    [16] 谢尔瓦尼木·阿不都艾尼, 海孜尼姑力·努尔, 赵歉歉, 李淑婷, 刘佳奇, 赵和平, 赵惠新. 枯草芽孢杆菌J-15抗大丽轮枝菌次生代谢产物对棉田土壤真菌多样性的影响[J]. 微生物学通报, 2021, 48(6): 1997-2007. Xieerwanimu×Abuduaini, Haiziniguli×Nuer, ZHAO QQ, LI ST, LIU JQ, ZHAO HP, ZHAO HX. Effects of Bacillus subtilis J-15 secondary metabolites against Verticillium dahliae on diversity of soil fungi[J]. Microbiology China, 2021, 48(6): 1997-2007(in Chinese).
    [17] 吴梦君. 枯草芽孢杆菌BS-Z15全基因组分析及其次级代谢产物发酵条件的优化[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2019. Wu MJ. Sequencing and functional annotation of the whole genome of Bacillus sp. strain BS-Z15 and optimization of fermentation conditions[D]. Urumqi: Master’s Thesis of Xinjiang Normal University, 2019(in Chinese).
    [18] SAJITHA KL, DEV SA, MARIA FLORENCE EJ. Identification and characterization of lipopeptides from Bacillus subtilis B1 against sapstain fungus of rubberwood through MALDI-TOF-MS and RT-PCR[J]. Current Microbiology, 2016, 73(1): 46-53.
    [19] THIMION L, PEYPOUX F, WALLACH J, MICHEL G. Effect of the lipopeptide antibiotic, iturin A, on morphology and membrane ultrastructure of yeast cells[J]. FEMS Microbiology Letters, 1995, 128(2): 101-106.
    [20] DELEU M, PAQUOT M, NYLANDER T. Fengycin interaction with lipid monolayers at the air-aqueous interface—implications for the effect of fengycin on biological membranes[J]. Journal of Colloid and Interface Science, 2005, 283(2): 358-365.
    [21] 赵君洁. 棉花黄萎病拮抗芽孢菌的筛选及其活性物质研究[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2017. ZHAO JJ. Screening, identification and characterization of the antifungal substance of antagonistic Bacillus anginst Verticillium dahilae[D]. Urumqi: Master’s Thesis of Xinjiang Normal University, 2017(in Chinese).
    [22] XIEERWANIMU A, AILINA A, LIN RR, SONG GG, HUANG Y, CHEN ZY, ZHAO HP, LUO Q, ZHAO HX. The lethal effect of Bacillus subtilis Z15 secondary metabolites on Verticillium dahliae[J]. Natural Product Communications, 2021, 16(1): 1934578X20986728.
    [23] 魏小文, 马翠, 熊亮, 张明明, 赵心清, 白凤武. 液泡蛋白酶B对酿酒酵母高温乙醇发酵效率的影响[J].微生物学通报, 2015, 42(10): 1841-1846. Wei XW, Ma C, Xiong L, Zhang MM, Zhao XQ, Bai FW. Effect of vacuolar proteinase B on high temperature ethanol fermentation of Saccharomyces cerevisiae[J]. Microbiology China, 2015, 42(10): 1841-1846(in Chinese).
    [24] MIZUSHIMA N, YOSHIMORI T, OHSUMI Y. The role of Atg proteins in autophagosome formation[J]. Annual Review of Cell and Developmental Biology, 2011, 27: 107-132.
    [25] GOZUACIK D, KIMCHI A. Autophagy and cell death[J]. Current Topics in Developmental Biology. Amsterdam: Elsevier, 2007: 217-245.
    [26] KOTANI T, KIRISAKO H, KOIZUMI M, OHSUMI Y, NAKATOGAWA H. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(41): 10363-10368.
    [27] SUZUKI K, KIRISAKO T, KAMADA Y, MIZUSHIMA N, NODA T, OHSUMI Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation[J]. The EMBO Journal, 2001, 20(21): 5971-5981.
    [28] KUMA A, MIZUSHIMA N, ISHIHARA N, OHSUMI Y. Formation of the ∼350-kDa Apg12-Apg5·Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast[J]. Journal of Biological Chemistry, 2002, 277(21): 18619-18625.
    [29] SCOTT RC, GABOR J, NEUFELD TP. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death[J]. Current Biology, 2007, 17(1): 1-11.
    [30] YEH YY, SHAH KH, HERMAN PK. An Atg13 protein-mediated self-association of the Atg1 protein kinase is important for the induction of autophagy[J]. Journal of Biological Chemistry, 2011, 286(33): 28931-28939.
    [31] MA MX, KUMAR S, PURUSHOTHAMAN L, BABST M, UNGERMANN C, CHI RJ, BURD CG. Lipid trafficking by yeast Snx4 family SNX-BAR proteins promotes autophagy and vacuole membrane fusion[J]. Molecular Biology of the Cell, 2018, 29(18): 2190-2200.
    [32] ORLEAN P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall[J]. Genetics, 2012, 192(3): 775-818.
    [33] BIZERRA FC, MELO ASA, KATCHBURIAN E, FREYMÜLLER E, STRAUS AH, TAKAHASHI HK, COLOMBO AL. Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species[J]. Antimicrobial Agents and Chemotherapy, 2011, 55(1): 302-310.
    [34] PREECHASUTH K, ANDERSON JC, PECK SC, BROWN AJP, GOW NAR, LENARDON MD. Cell wall protection by the Candida albicans class I chitin synthases[J]. Fungal Genetics and Biology, 2015, 82: 264-276.
    [35] HUANG LL, ZHANG J, SONG TZ, YUAN LY, ZHOU JJ, YIN HL, HE TL, GAO WC, SUN Y, HU XC, HUANG HQ. Antifungal curcumin promotes chitin accumulation associated with decreased virulence of Sporothrix schenckii[J]. International Immunopharmacology, 2016, 34: 263-270.
    [36] KLIS FM, BRUL S. Adaptations of the secretome of Candida albicans in response to host-related environmental conditions[J]. Eukaryotic Cell, 2015, 14(12): 1165-1172.
    [37] MORENO-RUIZ E, ORTU G, de GROOT PWJ, COTTIER F, LOUSSERT C, PRÉVOST MC, de KOSTER C, KLIS FM, GOYARD S, DʼENFERT C. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity[J]. Microbiology, 2009, 155(6): 2004-2020.
    [38] 李芙蓉, 丁涛, 白林含. 拟茎点霉属Phomopsis sp. S4菌株发酵产物对稻瘟病菌细胞膜的抑制作用[J]. 应用与环境生物学报, 2018, 24(2): 342-346. LI FR, DING T, BAI LH. Inhibition mechanism of fermentation broth extract of Phomopsis sp. strain S4 on cell membranes of Magnaporthe oryzae[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(2): 342-346(in Chinese).
    [39] 辛维岗, 江宇航, 陈诗雨, 徐美余, 周红兵, 张棋麟, 林连兵. 滇池金线鲃肠道产细菌素细菌的筛选鉴定及细菌素LSP01的抑菌作用[J]. 微生物学通报, 2022, 49(1): 242-255. XIN WG, JIANG YH, CHEN SY, XU MY, ZHOU HB, ZHANG QL, LIN LB. Screening and identification of bacteriocin-producing bacteria in the intestines of Sinocyclocheilus grahami in Dianchi and the antibacterial effect of bacteriocin LSP01[J]. Microbiology China, 2022, 49(1): 242-255(in Chinese).
    [40] LIN RR, ZHANG Q, YIN L, ZHANG YW, YANG QL, LIU K, WANG YD, HAN SC, ZHAO HX, ZHAO HP. Isolation and characterization of a mycosubtilin homologue antagonizing Verticillium dahliae produced by Bacillus subtilis strain Z15[J]. PLoS One, 2022, 17(6): e0269861.
    [41] 宁焕宸. 枯草芽孢杆菌J-15代谢产物抑制黄曲霉生长及产毒作用[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2022. NING HC. Inhibition of Aspergillus flavus growth and toxin production by metabolites of Bacillus subtilis J-15[D]. Urumqi: Master’s Thesis of Xinjiang Normal University, 2022(in Chinese).
    [42] WU JH, YE J, XIE Q, LIU B, LIU M. Targeting regulated cell death with pharmacological small molecules: an update on autophagy-dependent cell death, ferroptosis, and necroptosis in cancer[J]. Journal of Medicinal Chemistry, 2022, 65(4): 2989-3001.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Haoran, ZHAO Jingjing, YANG Jun, ZHOU Dongyuan, MA Chaoyue, CHEN Jiayi, ZHAO Huixin. Mechanism of Bacillus subtilis J-15 secondary metabolites in inhibiting Saccharomyces cerevisiae: based on transcriptomics[J]. Microbiology China, 2024, 51(3): 880-897

Copy
Share
Article Metrics
  • Abstract:308
  • PDF: 748
  • HTML: 485
  • Cited by: 0
History
  • Received:July 18,2023
  • Adopted:October 07,2023
  • Online: March 04,2024
  • Published: March 20,2024
Article QR Code