A saline-alkali tolerant strain of Citrobacter: application in promoting plant growth and mining of saline-alkali tolerance genes
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Saline-alkali tolerant and plant growth-promoting bacteria are praised for the effects on improving the growth and enhancing the saline-alkali tolerance of crops under saline-alkali stress. [Objective] To acquire the microbial resources that possess both saline-alkali tolerance and growth-promoting effects and decipher the mechanism underlying saline-alkali tolerance, we aimed to isolate a bacterial strain from the saline soil in Yinchuan City, Ningxia Hui Autonomous Region, China. [Methods] The strain was identified by morphological and microscopic observation, Biolog Gen Ⅲ test, and 16S rRNA gene sequencing. The culture method was used to examine the saline-alkali tolerance and growth-promoting effect of the strain. The genome information of the strain was analyzed by functional gene annotation. [Results] Strain YS-AT2 could grow in the LB media with pH 8.0–12.0 and 0%–9% (W/V) NaCl, and showed the alkali reduction rate reaching 13% and above in the media at pH 8.5–9.5. Strain YS-AT2 could use 54 carbon sources and was sensitive to 20 chemical sensitivity test substances. According to 16S rRNA gene sequencing results, YS-AT2 belonged to the genus Citrobacter. strain YS-AT2 could promote the seed growth of Arabidopsis thaliana in a saline environment with NaHCO3 (pH 9.5) and the germination of soybean seeds under 50–200 mmol/L NaCl or 50–200 mmol/L NaHCO3 stress. Furthermore, it increased soybean plant height, fresh weight, dry weight, and root length by 19.84%, 18.75%, 10.31%, and 32.58%, respectively, in the soil with pH 8.2 and EC 450 μs/cm. Strain YS-AT2 carried multiple genes associated with saline-alkali tolerance. The saline-alkali tolerance of this strain was probably realized through the transport of saline-alkali substances, the transport and regulation of sodium and potassium ions, and the synthesis of high-concentration cell solutes. [Conclusion] We analyzed the growth-promoting effect of the saline-alkali tolerant strain Citrobacter YS-AT2 on A. thaliana and soybean and mined the genes associated with its saline-alkali tolerance. The findings not only provided a theoretical basis and strain resources for the development of biofertilizers with saline-alkali growth promoting function but also laid a theoretical foundation for deciphering the mechanism underlying the saline-alkali tolerance.

    Reference
    [1] 张冠初. 盐胁迫对花生生理和种子际土壤特性的影响[D]. 沈阳: 沈阳农业大学博士学位论文, 2019. Zhang GC. Effect of salt stress on plant physiological and speremosphere soil characteristics in peanut[D]. Shenyang: Doctoral Dissertation of Shenyang Agricultural University, 2019(in Chinese).
    [2] 孙明真. 改良盐碱地高效功能微生物的筛选[D]. 烟台: 烟台大学硕士学位论文, 2020. Sun MZ. Screening of efficient functional microorganisms in improved saline-alkali soil[D]. Yantai: Master’s Thesis of Yantai University, 2020(in Chinese).
    [3] 张金林, 李惠茹, 郭姝媛, 王锁民, 施华中, 韩庆庆, 包爱科, 马清. 高等植物适应盐逆境研究进展[J]. 草业学报, 2015, 24(12): 220-236. ZHANG JL, LI HR, GUO SY, WANG SM, SHI HZ, HAN QQ, BAO AK, MA Q. Research advances in higher plant adaptation to salt stress[J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236(in Chinese).
    [4] van der HEIJDEN MGA, BARDGETT RD, van STRAALEN NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3): 296-310.
    [5] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. SHEN RF, ZHAO XQ. Role of soil microbes in the acquisition of nutrients by plants[J]. Acta Ecologica Sinica, 2015, 35(20): 6584-6591(in Chinese).
    [6] 曹晶晶, 熊悯梓, 钞亚鹏, 赵盼, 汪志琴, 仲乃琴. 极耐盐碱固氮菌的分离鉴定及固氮特性研究[J]. 微生物学报, 2021, 61(11): 3483-3495. CAO JJ, XIONG MZ, CHAO YP, ZHAO P, WANG ZQ, ZHONG NQ. Isolation and identification of extremely salt-tolerant azotobacter and its nitrogen-fixing characteristics[J]. Acta Microbiologica Sinica, 2021, 61(11): 3483-3495(in Chinese).
    [7] 宋金秋, 刘淑娇, 崔丽红, 恩特马克·布拉提白. 根际细菌溶磷、产IAA及其抑菌作用的研究[J]. 基因组学与应用生物学, 2017, 36(11): 4722-4728. Song JQ, Liu SJ, Cui LH, BORRATHYBAY E. Study on the phosphate solubilization capacity, producing IAA and its anti-bacteria activity of rhizobacteria[J]. Genomics and Applied Biology, 2017, 36(11): 4722-4728(in Chinese).
    [8] 刘丹丹, 李敏, 刘润进. 我国植物根围促生细菌研究进展[J]. 生态学杂志, 2016, 35(3): 815-824. Liu DD, Li M, Liu RJ. Recent advances in the study of plant growth-promoting rhizobacteria in China[J]. Chinese Journal of Ecology, 2016, 35(3): 815-824(in Chinese).
    [9] 范丙全. 我国生物肥料研究与应用进展[J].植物营养与肥料学报, 2017, 23(6): 1602-1613. FAN BQ. Advances in biofertilizer research and development in China[J]. Plant Nutrition and Fertilizer Science, 2017, 23(6): 1602-1613(in Chinese).
    [10] 李章雷, 刘爽, 王艳宇, 周妍, 刘权, 殷奎德. 5株耐盐碱促生细菌的筛选鉴定及其对红小豆的促生作用[J].微生物学通报, 2021, 48(5): 1580-1592. LI ZL, LIU S, WANG YY, ZHOU Y, LIU Q, YIN KD. Screening and identification of five saline-alkali tolerant bacteria for growth promotion of red adzuki bean[J]. Microbiology China, 2021, 48(5): 1580-1592(in Chinese).
    [11] UPADHYAY SK, SINGH DP. Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment[J]. Plant Biology, 2015, 17(1): 288-293.
    [12] ZHANG JH, HUSSAIN S, ZHAO FT, ZHU LF, CAO XC, YU SM, JIN QY. Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere[J]. Journal of Soils and Sediments, 2018, 18(4): 1453-1465.
    [13] 王丹, 赵亚光, 张凤华. 耐盐促生菌筛选、鉴定及对盐胁迫小麦的效应[J]. 麦类作物学报, 2020, 40(1): 110-117. WANG D, ZHAO YG, ZHANG FH. Screening and identification of salt-tolerant plant growth-promoting bacteria and its promotion effect on wheat seedling under salt stress[J]. Journal of Triticeae Crops, 2020, 40(1): 110-117(in Chinese).
    [14] 黄臣, 韩玲娟, 梁银萍, 杨凯元, 蒋霖, 孙小涵, 范乐, 赵祥, 高鹏. 达乌里胡枝子四株耐盐碱根际促生菌的鉴定及其促生作用[J]. 草地学报, 2023, 31(4): 1036-1047. HUANG C, HAN LJ, LIANG YP, YANG KY, JIANG L, SUN XH, FAN L, ZHAO X, GAO P. Identification and plant growth promotion analysis of four salt-alkali tolerant rhizosphere-promoting bacteria isolated from Lespedeza daurica[J]. Acta Agrestia Sinica, 2023, 31(4): 1036-1047(in Chinese).
    [15] 孙培, 王罡, 张亚楠, 李倩, 季静, 杨丹, 袁东, 王畅, 王昱蓉, 王萍. 一种耐盐促生菌筛选、鉴定及对玉米幼苗生长的影响[J]. 生物技术通报, 2019, 35(8): 27-33. SUN P, WANG G, ZHANG YN, LI Q, JI J, YANG D, YUAN D, WANG C, WANG YR, WANG P. Screening and identification of a salt-tolerant growth-promoting bacterium and its effect on the growth of maize seedlings[J]. Biotechnology Bulletin, 2019, 35(8): 27-33(in Chinese).
    [16] 孙雪, 董永华, 王娜, 崔文会, 廖鲜艳, 刘莉. 耐盐碱促生菌的筛选及性能[J]. 生物工程学报, 2020, 36(7): 1356-1364. SUN X, DONG YH, WANG N, CUI WH, LIAO XY, LIU L. Screening and evaluation of saline-alkali-tolerant and growth-promoting bacteria[J]. Chinese Journal of Biotechnology, 2020, 36(7): 1356-1364(in Chinese).
    [17] 张哲超. 耐盐碱根际促生菌与丛枝菌根真菌联合提高牧草盐碱耐受性的微生物机制研究[D]. 呼和浩特: 内蒙古大学博士学位论文, 2022. Zhang ZC. Microbial mechanism of combined inoculation with haloalkali tolerant rhizosphere growth promoting bacteria and arbuscular mycorrhizal fungl to improve saline-alkaline tolerance of herbage[J]. Hohhot: Doctoral Dissertation of Inner Mongolia University, 2022(in Chinese).
    [18] 姜焕焕, 王通, 陈娜, 禹山林, 迟晓元, 王冕, 祁佩时. 根际促生菌提高植物抗盐碱性的研究进展[J]. 生物技术通报, 2019, 35(10): 189-197. JIANG HH, WANG T, CHEN N, YU SL, CHI XY, WANG M, QI PS. Research progress in PGPR improving plant’s resistance to salt and alkali[J]. Biotechnology Bulletin, 2019, 35(10): 189-197(in Chinese).
    [19] 郑娜, 柯林峰, 杨景艳, 王雪飞, 黄典, 程万里, 李嘉晖, 郑龙玉, 喻子牛, 张吉斌. 来源于污染土壤的植物根际促生细菌对番茄幼苗的促生与盐耐受机制[J]. 应用与环境生物学报, 2018, 24(1): 47-52. ZHENG N, KE LF, YANG JY, WANG XF, HUANG D, CHENG WL, LI JH, ZHENG LY, YU ZN, ZHANG JB. Growth improvement and salt tolerance mechanisms of tomato seedlings mediated by plant growth-promoting rhizobacteria from contaminated soils[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(1): 47-52(in Chinese).
    [20] TSAVKELOVA EA, CHERDYNTSEVA TA, BOTINA SG, NETRUSOV AI. Bacteria associated with orchid roots and microbial production of auxin[J]. Microbiological Research, 2007, 162(1): 69-76.
    [21] MUYZER G, de WAAL EC, UITTERLINDEN AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
    [22] YU JK, YU ZR, FAN G, WANG G, LIU XS. Isolation and characterization of indole acetic acid producing root endophytic bacteria and their potential for promoting crop growth[J]. Journal of Agricultural Science and Technology, 2016, 18: 1381-1391.
    [23] TATUSOVA T, DiCUCCIO M, BADRETDIN A, CHETVERNIN V, NAWROCKI EP, ZASLAVSKY L, LOMSADZE A, PRUITT KD, BORODOVSKY M, OSTELL J. NCBI prokaryotic genome annotation pipeline[J]. Nucleic Acids Research, 2016, 44(14): 6614-6624.
    [24] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27. YANG JS, YAO RJ, WANG XP, XIE WP, ZHANG X, ZHU W, ZHANG L, SUN RJ. Research on salt-affected soils in China: history, status quo and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27(in Chinese).
    [25] 雒珺瑜, 张帅, 朱香镇, 王春义, 吕丽敏, 李春花, 崔金杰. 盐碱旱地转基因抗虫棉田昆虫群落多样性[J]. 生物多样性, 2016, 24(3): 332-340. LUO JY, ZHANG S, ZHU XZ, WANG CY, LYU LM, LI CH, CUI JJ. Insect community diversity in transgenic Bt cotton in saline and dry soils[J]. Biodiversity Science, 2016, 24(3): 332-340(in Chinese).
    [26] 康贻军, 程洁, 梅丽娟, 胡健, 朴哲, 殷士学. 植物根际促生菌作用机制研究进展[J]. 应用生态学报, 2010, 21(1): 232-238. KANG YJ, CHENG J, MEI LJ, HU J, PIAO Z, YIN SX. Action mechanisms of plant growth-promoting rhizobacteria (PGPR): a review[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 232-238(in Chinese).
    [27] 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87. PAN J, HUANG CH, PENG F, YOU QG, LIU FY, XUE X. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnology Bulletin, 2020, 36(9): 75-87(in Chinese).
    [28] KUKLINSKY-SOBRAL J, ARAÚJO WL, MENDES R, GERALDI IO, PIZZIRANI-KLEINER AA, AZEVEDO JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion[J]. Environmental Microbiology, 2004, 6(12): 1244-1251.
    [29] 王宝山, 邹琦. 质膜转运蛋白及其与植物耐盐性关系研究进展[J]. 植物学通报, 2000(1): 17-26. WANG BS, ZOU Q. Advances in the study on plasma membrane-bound translocating proteins and their relations with salt tolerance in plants[J]. Chinese Bulletin of Botany, 2000(1): 17-26(in Chinese).
    [30] ABDEL HAMED ABDEL LATEF A, HE CX. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?[J]. Journal of Plant Growth Regulation, 2014, 33(3): 644-653.
    [31] 吴志勇, 李由然, 顾正华, 丁重阳, 张梁, 石贵阳. 枯草芽孢杆菌l-脯氨酸合成途径中glnA、proB、proA基因功能探究[J]. 微生物学报, 2018, 58(1): 39-50. WU ZY, LI YR, GU ZH, DING CY, ZHANG L, SHI GY. Function of glnA, proB and proA genes in l-proline anabolic pathway of Bacillus subtilis[J]. Acta Microbiologica Sinica, 2018, 58(1): 39-50(in Chinese).
    [32] SHIN W, SIDDIKEE MA, JOE MM, BENSON A, KIM K, SELVAKUMAR G, KANG Y, JEON S, SAMADDAR S, CHATTERJEE P, WALITANG D, CHANRATANA M, SA TM. Halotolerant plant growth promoting bacteria mediated salinity stress amelioration in plants[J]. Korean Journal of Soil Science and Fertilizer, 2016, 49(4): 355-367.
    [33] AHMAD P, AZOOZ MM, PRASAD MNV. Ecophysiology and Responses of Plants under Salt Stress[M]. New York, NY: Springer New York, 2013.
    [34] HABIB SH, KAUSAR H, SAUD HM. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes[J]. BioMed Research International, 2016, 2016: 1-10.
    [35] 严青青, 张巨松, 李星星, 王燕提. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1): 100-110. YAN QQ, ZHANG JS, LI XX, WANG YT. Effects of salinity stress on seed germination and root growth of seedlings in is-land cotton[J]. Acta Agronomica Sinica, 2019, 45(1): 100-110(in Chinese).
    [36] 苑霖, 王新珍, 孙宏勇, 刘小京, 刘彬彬. 一株克锡勒氏菌对小麦苗期的促生耐盐效应研究[J]. 中国生态农业学报, 2021, 29(11): 1913-1920. YUAN L, WANG XZ, SUN HY, LIU XJ, LIU BB. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913-1920(in Chinese).
    [37] 郭晓萌. 组学工具解析盐碱菌独特的环境适应机理[D]. 临汾: 山西师范大学硕士学位论文, 2018. GUO XM. Analysis of unique environmental adaptation mechanism of saline-alkali bacteria by omics tools[D]. Linfen: Master’s Thesis of Shanxi Normal University, 2018(in Chinese).
    [38] 刘少芳, 王若愚. 植物根际促生细菌提高植物耐盐性研究进展[J]. 中国沙漠, 2019, 39(2): 1-12. LIU SF, WANG RY. Advance in research on plant salt tolerance improved by plant-growth-promoting rhizobacteria[J]. Journal of Desert Research, 2019, 39(2): 1-12(in Chinese).
    [39] 贾冰冰. AM真菌提高牧草在重金属污染盐碱化土壤中耐受性的作用机制[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2021. JIA BB. Mechanism of AM fungi improving forage tolerance in heavy metal contaminated saline-alkaline soil[D]. Hohhot: Master’s Thesis of Inner Mongolia University, 2021(in Chinese).
    [40] ETESAMI H, BEATTIE GA. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops[J]. Frontiers in Microbiology, 2018, 9: 148.
    [41] Qin Y, Druzhinina I S, Pan X, Yun Z. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1245-1259.
    [42] 薛巧, 赵战勤, 刘会胜, 薛云, 董发明. 弗氏柠檬酸杆菌对动物和人致病性研究进展[J]. 动物医学进展, 2015, 36(7): 81-85. XUE Q, ZHAO ZQ, LIU HS, XUE Y, DONG FM. Progress on Citrobacter freundii pathogenicity in animals and humans[J]. Progress in Veterinary Medicine, 2015, 36(7): 81-85(in Chinese).
    [43] HUSSAINI S, UMMULKUSUM M, SHUAIBU BALA M, ABDULRAHMAN ASHAFA M. Isolation, identification and screening of bacteria with antibiotic production potential from termite mounds[J]. Advances in Biochemistry, 2021, 9(3): 56.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YU Jiang, WANG Xinzhen, WANG Chun, CAO Yingxue, YU Zhenhua. A saline-alkali tolerant strain of Citrobacter: application in promoting plant growth and mining of saline-alkali tolerance genes[J]. Microbiology China, 2024, 51(3): 864-879

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 11,2023
  • Adopted:November 02,2023
  • Online: March 04,2024
  • Published: March 20,2024
Article QR Code