Bibliometric and visual analysis of phosphorus-transforming microorganisms based on CiteSpace
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Phosphorus-transforming microorganisms play an important role in the phosphorus cycle in the natural environment. These microorganisms promote the efficient resource utilization, reduce environmental pollution, and have positive impacts on food security and ecosystem stability by dissolving, mineralizing, absorbing, and transporting phosphorus in the environment. [Objective] To explore the research hotspots and trends of phosphorus- transforming microorganisms both domestically and internationally in recent years, visualize the knowledge structure and evolution process in this field, and provide feasible references and insights for subsequent research. [Methods] We retrieved the articles in this field published by China National Knowledge Infrastructure (CNKI) and Web of Science core collection (WOS) from 2002 to 2022. CiteSpace was employed to analyze the keyword co-occurrence, keyword clustering, bursts, number of publications, country distribution, author cooperation, and institution collaboration. [Results] A total of 887 valid articles were ultimately screened out. The research on phosphorus-transforming microorganisms began to flourish after 2016 and experienced accelerated growth in recent years. China and the United States were leaders in this field. China was the country with the largest number of publications, and the Chinese Academy of Sciences was the institution with the largest number of publications. The research hotspots included the classification and screening of strains, metabolic pathways, nutrient cycling, environmental pollution, and ecological protection. [Conclusion] Phosphorus-transforming microorganisms have broad development prospects. The mechanism of phosphorus- transforming microorganisms in response to biochar is becoming a new research hotspot. The wide application of such technologies in the future is an inevitable development trend. This article provides a visual explanation of the research and development trend of phosphorus-transforming microorganisms, proposes future key research directions, and provides a theoretical basis for agricultural production and sustainable development.

    Reference
    [1] XIN ZK, GONG WQ, HU C, LI YB, HUANG W. Study on screening of phosphate-solubilizing microbesand their ability of phosphorus removal[J]. Journal of Wuhan University of Technology, 2011, 33(1):121-124.
    [2] 孙波, 廖红, 苏彦华, 许卫锋, 蒋瑀霁. 土壤-根系-微生物系统中影响氮磷利用的一些关键协同机制的研究进展[J]. 土壤, 2015, 47(2):210-219. SUN B, LIAO H, SU YH, XU WF, JIANG YJ. Advances in key coordinative mechanisms in soil-root-microbe systems to affect nitrogen and phosphorus utilization[J]. Soils, 2015, 47(2):210-219(in Chinese).
    [3] SHEIK AR, MULLER EEL, WILMES P. A hundred years of activated sludge:time for a rethink[J]. Frontiers in Microbiology, 2014, 5:47.
    [4] MOHAMED TA, WU JQ, ZHAO Y, ELGIZAWY N, EL KHOLY M, YANG HY, ZHENG GR, MU DC, WEI ZM. Insights into enzyme activity and phosphorus conversion during kitchen waste composting utilizing phosphorus-solubilizing bacterial inoculation[J]. Bioresource Technology, 2022, 362:127823.
    [5] ZHANG TY, JIN W, LI T, WEI W, LI CJ, MIAO L, LI LL. Screening of affinity phosphate-solubilizing bacteria from typical purple soil and its growth promoting effect[J]. Environmental Science and Technology, 2021, 44(6):21-26.
    [6] FAGERIA NK, MOREIRA A, dos SANTOS AB. Phosphorus uptake and use efficiency in field crops[J]. Journal of Plant Nutrition, 2013, 36(13):2013-2022.
    [7] BABANA AH, ANTOUN H. Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali[J]. Plant and Soil, 2006, 287(1/2):51-58.
    [8] 陈悦, 陈超美, 刘则渊, 胡志刚, 王贤文. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2):242-253. CHEN Y, CHEN CM, LIU ZY, HU ZG, WANG XW. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2):242-253(in Chinese).
    [9] 萧涵, 周宇飞, 陈毅欣, 胡腾飞, 刘仲华, 黄建安, 李勤. 基于CiteSpace的乌龙茶香气研究知识图谱分析[J]. 食品与发酵工业, 2023, 49(5):344-351. XIAO H, ZHOU YF, CHEN YX, HU TF, LIU ZH, HUANG JA, LI Q. Visual analysis of oolong tea aroma research based on CiteSpace[J]. Food and Fermentation Industries, 2023, 49(5):344-351(in Chinese).
    [10] 张鑫, 王吉, 胡静荣, 王莹, 来静, 周丽媛, 朱迎春. 基于CiteSpace和文献计量分析平台的鱼糜研究可视化分析[J]. 食品科学, 2023, 44(1):362-370. ZHANG X, WANG J, HU JR, WANG Y, LAI J, ZHOU LY, ZHU YC. Visual analysis of surimi research using CiteSpace and bibliometric analysis platform[J]. Food Science, 2023, 44(1):362-370(in Chinese).
    [11] 赵衍, 杨喆涵. 基于知识图谱的我国高校图书馆个性化推荐研究综述[J]. 上海管理科学, 2021, 43(5):116-124. ZHAO Y, YANG ZH. Literature review of the research on personalized recommendation of Chinese university libraries based on knowledge graph[J]. Shanghai Management Science, 2021, 43(5):116-124(in Chinese).
    [12] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8):3937-3947. WANG SQ, YU GR. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J]. Journal of Ecology, 2008, 28(8):3937-3947(in Chinese).
    [13] 魏丹, 杨华薇, 陈延华, 吕春玲, 毕睿忻, 张馨元, 马茂亭. 有机酸对土壤磷的活化利用研究进展[J]. 农业环境科学学报, 2022, 41(7):1391-1399. WEI D, YANG HW, CHEN YH, LÜ CL, BI RX, ZHANG XY, MA MT. Research on the activation and regulation of soil phosphorus by organic acids[J]. Journal of Agro-Environment Science, 2022, 41(7):1391-1399(in Chinese).
    [14] 李静, 赵婧娴, 廉鑫, 李天森. 基于CiteSpace的磷形态研究进展及前沿分析[J]. 环境生态学, 2021(6):85-90, 94. LI J, ZHAO JX, LIAN X, LI TS. Research progress and frontier of phosphorus speciation based on CiteSpace[J]. Environmental Ecology, 2021(6):85-90, 94(in Chinese).
    [15] 王毅, 张俊清, 况帅, 管恩森, 禚其翠, 宋晓培, 芦伟龙, 王大海, 刘跃东, 张继光. 施用小麦秸秆或其生物炭对烟田土壤理化特性及有机碳组分的影响[J].植物营养与肥料学报, 2020, 26(2):285-294. WANG Y, ZHANG JQ, KUANG S, GUAN ES, ZHUO QC, SONG XP, LU WL, WANG DH, LIU YD, ZHANG JG. Effects of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-cured tobacco field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2):285-294(in Chinese).
    [16] 池景良, 郝敏, 王志学, 李杨. 解磷微生物研究及应用进展[J].微生物学杂志, 2021, 41(1):1-7. CHI JL, HAO M, WANG ZX, LI Y. Advances in research and application of phosphorus-solubilizing microorganism[J]. Journal of Microbiology, 2021, 41(1):1-7(in Chinese).
    [17] 王光华, 赵英, 周德瑞, 杨谦. 解磷菌的研究现状与展望[J]. 生态环境, 2003(1):96-101. WANG GH, ZHAO Y, ZHOU DR, YANG Q. Review of phosphate-solubilizing microorganisms[J]. Ecology and Environmnet, 2003(1):96-101(in Chinese).
    [18] 王富民, 刘桂芝, 张彦, 吴皓琼, 沙长青, 李雅文, 王延秋, 徐浩林, 徐光云. 高效溶磷菌的分离、筛选及在土壤中溶磷有效性的研究[J]. 生物技术, 1992, 2(6):34-37. WANG FM, LIU GZ, ZHANG Y, WU HQ, SHA CQ, LI YW, WANG YQ, XU HL, XU GY. Study of separate and selecte for the dissolve phosphorus microorganisms as well as the effect of dissolve phosphorus in soil[J]. Biotechnology, 1992, 2(6):34-37(in Chinese).
    [19] HU C, YANG O, WANG LX, YAN BX, LI YX, BAO MW. Dissolved organic carbon, a critical factor to increase the bioavailability of phosphorus during biochar-amended aerobic composting[J]. Journal of Environmental Sciences, 2022, 113:356-364.
    [20] 柯春亮, 陈宇丰, 周登博, 黄绵佳, 张锡炎, 高祝芬. 香蕉根际土壤解磷细菌的筛选、鉴定及解磷能力[J]. 微生物学通报, 2015, 42(6):1032-1042. KE CL, CHEN YF, ZHOU DB, HUANG MJ, ZHANG XY, GAO ZF. Isolation, identification and phosphate solubilization analysis of phosphate-solubilizing bacteria derived from banana rhizosphere soil[J]. Microbiology China, 2015, 42(6):1032-1042(in Chinese).
    [21] DAI ZM, LIU GF, CHEN HH, CHEN CR, WANG JK, AI SY, WEI D, LI DM, MA B, TANG CX, BROOKES PC, XU JM. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3):757-770.
    [22] KELLER M, OBERSON A, ANNAHEIM KE, TAMBURINI F, MÄDER P, MAYER J, FROSSARD E, BÜNEMANN EK. Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3):385-393.
    [23] RICHARDSON AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants[J]. Functional Plant Biology, 2001, 28(9):897.
    [24] KHAN MS, ZAIDI A, WANI PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review[J].Agronomy for Sustainable Development, 2007, 27(1):29-43.
    [25] 安健, 伏光辉, 阮记明, 陈百尧, 龚琪本, 唐兴本, 杨先乐. 反硝化除磷菌筛选及其特性研究[J]. 微生物学通报, 2012, 39(2):162-171. AN J, FU GH, RUAN JM, CHEN BY, GONG QB, TANG XB, YANG XL. Studies on the screening of denitrifying and phosphorus removal bacteria and its characteristics[J]. Microbiology China, 2012, 39(2):162-171(in Chinese).
    [26] WAN WJ, WANG Y, TAN JD, QIN Y, ZUO WL, WU HQ, HE HM, HE DL. Alkaline phosphatase-harboring bacterial community and multiple enzyme activity contribute to phosphorus transformation during vegetable waste and chicken manure composting[J]. Bioresource Technology, 2020, 297:122406.
    [27] 赵雪淞, 宋王芳, 高欣, 杨晨曦, 于洪波, 王冬旭. 秸秆还田和耕作方式对花生土壤微生物量、酶活性和产量的影响[J]. 中国土壤与肥料, 2020(3):126-132. ZHAO XS, SONG WF, GAO X, YANG CX, YU HB, WANG DX. Effects of straw returning and tillage methods on soil microbial biomass, enzyme activity and yield of peanut[J]. Soils and Fertilizers Sciences in China, 2020(3):126-132(in Chinese).
    [28] 黄敏, 吴金水, 黄巧云, 李学垣. 土壤磷素微生物作用的研究进展[J]. 生态环境, 2003(3):366-370. HUANG M, WU JS, HUANG QY, LI XY. Process in research on microbiological action of soil phosphorus[J]. Ecology and Environmnet, 2003(3):366-370(in Chinese).
    [29] 刘津, 李春越, 邢亚薇, 王益, 薛英龙, 王苁蓉, 党廷辉. 长期施肥对黄土旱塬农田土壤有机磷组分及小麦产量的影响[J]. 应用生态学报, 2020, 31(1):157-164. LIU J, LI CY, XING YW, WANG Y, XUE YL, WANG CR, DANG TH. Effects of long-term fertilization on soil organic phosphorus fractions and wheat yield in farmland of Loess Plateau[J]. Chinese Journal of Applied Ecology, 2020, 31(1):157-164(in Chinese).
    [30] LIU JS, MA Q, HUI XL, RAN JY, MA QX, WANG XS, WANG ZH. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency[J]. Soil Biology and Biochemistry, 2020, 149:107918.
    [31] 高文翠, 杨卫君, 贺佳琪, 贾永红, 徐万里, 马海刚. 生物炭添加对麦田土壤微生物群落代谢的影响[J].生态学杂志, 2020, 39(12):3998-4004. GAO WC, YANG WJ, HE JQ, JIA YH, XU WL, MA HG. Effects of biochar on soil microbial community metabolism in wheat field[J]. Chinese Journal of Ecology, 2020, 39(12):3998-4004(in Chinese).
    [32] ACEVEDO E, GALINDO-CASTAÑEDA T, PRADA F, NAVIA M, ROMERO HM. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm (Elaeis guineensis Jacq.) in Colombia[J]. Applied Soil Ecology, 2014, 80:26-33.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GAO Chuanyu, LI Chunyue, LI Yifan, LI Qianxue, KOU Zhaoyang, ZHANG Wenting. Bibliometric and visual analysis of phosphorus-transforming microorganisms based on CiteSpace[J]. Microbiology China, 2023, 50(11): 5235-5248

Copy
Share
Article Metrics
  • Abstract:296
  • PDF: 701
  • HTML: 659
  • Cited by: 0
History
  • Received:March 26,2023
  • Adopted:May 06,2023
  • Online: November 06,2023
  • Published: November 20,2023
Article QR Code