Isolation, identification and genome sequencing of a virulent phage infecting Enterococcus faecium
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] Enterococcus faecium is one of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Due to the resistance to a variety of antimicrobial agents, E. faecium seriously threatens human health and is included in the WHO priority pathogens list for R&D of new antibiotics. [Objective] To isolate, characterize, and sequence the genome of the virulent phage against E. faecium, so as to provide raw materials for the phage therapy of E. faecium. [Methods] A phage strain 1A11 against E. faecium was isolated from pasture sewage. The phage was observed in a transmission electron microscope, and its optimal multiplicity of infection, one-step growth curve, and lysis spectrum were determined. The biological characteristics of the strain were analyzed and the whole genome was sequenced. [Results] E. faecium phage 1A11 had a typical icosahedral head and a long tail, belonging to the Siphoviridae of the Caudovirales. The strain showed the optimum multiplicity of infection of 0.01, a lysis cycle of 70 min, an incubation period of 30 min, and an outbreak period of 40 min. It exerted specific lysis effects on several strains of E. faecium. Phage 1A11 had a genome of 42 750 bp with the GC content of 34.71%, 70 putative open reading frames (ORFs), and no antibiotic resistance genes or virulence genes. It can be used for the phage therapy of E. faecium. [Conclusion] A new strain of E. faecium phage 1A11 was isolated, which has certain research value and application potential, and laid a foundation for the study of E. faecium phage therapy.

    Reference
    [1] YOONG P, SCHUCH R, NELSON D, FISCHETTI VA. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium[J]. Journal of Bacteriology, 2004, 186(14):4808-4812.
    [2] 雷喜玲, 叶金云, 陈丽仙, 李爱科, 王薇薇, 乔琳, 王丽. 屎肠球菌的作用机制及其在水产动物中的应用[J]. 饲料工业, 2022, 43(22):9-15. LEI XL, YE JY, CHEN LX, LI AK, WANG WW, QIAO L, WANG L. The mechanisms and its application of Enterococcus faecium in aquatic animals[J]. Feed Industry, 2022, 43(22):9-15(in Chinese).
    [3] JETT BD, HUYCKE MM, GILMORE MS. Virulence of enterococci[J]. Clinical Microbiology Reviews, 1994, 7(4):462-478.
    [4] LEE T, PANG S, ABRAHAM S, COOMBS GW. Antimicrobial-resistant CC17Enterococcus faecium:the past, the present and the future[J]. Journal of Global Antimicrobial Resistance, 2019, 16:36-47.
    [5] WERNER G, NEUMANN B, WEBER RE, KRESKEN M, WENDT C, BENDER JK, BECKER K, BORGMANN S, DIEFENBACH A, HAMPRECHT A, HOGARDT M, WICHELHAUS T, KEMP V, HUEBNER NO, KAASCH A, GEGINAT G, KOHNEN W, MENZER A, KRAUSE T, MIETHKE T, et al. Thirty years of VRE in Germany-"expect the unexpected":the view from the National Reference Centre for Staphylococci and Enterococci[J]. Drug Resistance Updates, 2020, 53:100732.
    [6] 傅希贤. 肠球菌感染[J]. 中国实用内科杂志, 1997(3):134-136. FU XX. Enterococcus infection[J]. Chinese Journal of Practical Internal Medicine, 1997(3):134-136(in Chinese).
    [7] MURRAY BE. The life and times of the Enterococcus[J]. Clinical Microbiology Reviews, 1990, 3(1):46-65.
    [8] LU HZ, WENG XH, LI HJ, YIN YK, PANG MY, TANG YW. Enterococcus faecium-related outbreak with molecular evidence of transmission from pigs to humans[J]. Journal of Clinical Microbiology, 2002, 40(3):913-917.
    [9] DENISSEN J, REYNEKE B, WASO-REYNEKE M, HAVENGA B, BARNARD T, KHAN S, KHAN W. Prevalence of ESKAPE pathogens in the environment:antibiotic resistance status, community-acquired infection and risk to human health[J]. International Journal of Hygiene and Environmental Health, 2022, 244:114006.
    [10] GORDILLO ALTAMIRANO FL, BARR JJ. Phage therapy in the postantibiotic era[J]. Clinical Microbiology Reviews, 2019, 32(2):e00066-18.
    [11] 梁冰纯, 赵文鹏, 韩博, 高健. 噬菌体治疗动物细菌感染性疾病的研究进展[J]. 中国兽医杂志, 2023, 59(1):107-110. LIANG BC, ZHAO WP, HAN B, GAO J. Research progress of Phage therapy for animal bacterial infectious diseases[J]. Chinese Journal of Veterinary Medicine, 2023, 59(1):107-110(in Chinese).
    [12] NIKOLICH MP, FILIPPOV AA. Bacteriophage therapy:developments and directions[J]. Antibiotics, 2020, 9(3):135.
    [13] BURROWES B, HARPER DR, ANDERSON J, MCCONVILLE M, ENRIGHT MC. Bacteriophage therapy:potential uses in the control of antibiotic-resistant pathogens[J]. Expert Review of Anti-infective Therapy, 2011, 9(9):775-785.
    [14] SPECK P, SMITHYMAN A. Safety and efficacy of phage therapy via the intravenous route[J]. FEMS Microbiology Letters, 2016, 363(3):fnv242.
    [15] ABEDON ST, KUHL SJ, BLASDEL BG, KUTTER EM. Phage treatment of human infections[J]. Bacteriophage, 2011, 1(2):66-85.
    [16] MONK AB, REES CD, BARROW P, HAGENS S, HARPER DR. Bacteriophage applications:where are we now?[J]. Letters in Applied Microbiology, 2010, 51(4):363-369.
    [17] PAJUNEN M, KILJUNEN S, SKURNIK M. Bacteriophage φYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7[J]. Journal of Bacteriology, 2000, 182(18):5114-5120.
    [18] HAN GL, ZHANG JR, LUO ZD, LU B, ZHANG PF, YONG K, WANG Y, LUO Y, YANG ZX, REN MS, CAO SZ, Y XP. Characteristics of a novel temperate bacteriophage against Staphylococcus arlettae (vB_SarS_BM31)[J]. International Microbiology, 2023, 26(2):327-341.
    [19] HOWDEN BP, HOLT KE, LAM MMC, SEEMANN T, BALLARD S, COOMBS GW, TONG SYC, GRAYSON ML, JOHNSON PDR, STINEAR TP. Genomic insights to control the emergence of vancomycin-resistant enterococci[J]. mBio, 2013, 4(4):e00412-13.
    [20] RANOTKAR S, KUMAR P, ZUTSHI S, PRASHANTH KS, BEZBARUAH B, ANAND J, LAHKAR M. Vancomycin-resistant enterococci:troublemaker of the 21st century[J]. Journal of Global Antimicrobial Resistance, 2014, 2(4):205-212.
    [21] NOBLE WC, VIRANI Z, CREE RGA. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus[J]. FEMS Microbiology Letters, 1992, 93(2):195-198.
    [22] SCHOOLEY RT, BISWAS B, GILL JJ, HERNANDEZ-MORALES A, LANCASTER J, LESSOR L, BARR JJ, REED SL, ROHWER F, BENLER S, SEGALL AM, TAPLITZ R, SMITH DM, KERR K, KUMARASWAMY M, NIZET V, LIN L, McCAULEY MD, STRATHDEE SA, BENSON CA, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(10):e00954-17.
    [23] ESKENAZI A, LOOD C, WUBBOLTS J, HITES M, BALARJISHVILI N, LESHKASHELI L, ASKILASHVILI L, KVACHADZE L, VAN NOORT V, WAGEMANS J, JAYANKURA M, CHANISHVILI N, DE BOER M, NIBBERING P, KUTATELADZE M, LAVIGNE R, MERABISHVILI M, PIRNAY JP. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae[J]. Nature Communications, 2022, 13:302.
    [24] DEDRICK RM, GUERRERO-BUSTAMANTE CA, GARLENA RA, RUSSELL DA, FORD K, HARRIS K, GILMOUR KC, SOOTHILL J, JACOBS-SERA D, SCHOOLEY RT, HATFULL GF, SPENCER H. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus[J]. Nature Medicine, 2019, 25(5):730-733.
    [25] HUANG YL, WANG WH, ZHANG ZH, GU YF, HUANG AX, WANG JH, HAO HH. Phage products for fighting antimicrobial resistance[J]. Microorganisms, 2022, 10(7):1324.
    [26] STRATHDEE SA, HATFULL GF, MUTALIK VK, SCHOOLEY RT. Phage therapy:from biological mechanisms to future directions[J]. Cell, 2023, 186(1):17-31.
    [27] 史一博, 孙建和. λ噬菌体穿孔素(holin)蛋白触发裂菌的分子机制[J]. 微生物学报, 2012, 52(2):141-145. SHI YB, SUN JH. Current advance in the topological structure and function of holin encoded by bacteriophage lambda:a review[J]. Acta Microbiologica Sinica, 2012, 52(2):141-145(in Chinese).
    [28] 宫鹏娟. 屎肠球菌噬菌体IME-EFm5的分离鉴定及其裂解酶关键作用位点的研究[D]. 长春:吉林大学硕士学位论文, 2016. GONG PJ. The iolation and researches of Enterococcus facium bacteriphage IME-EFm5 and the key residues of its lysin[D]. Changchun:Master's Thesis of Jilin University, 2016(in Chinese).
    [29] WANG YH, WANG W, LV YQ, ZHENG WL, MI ZQ, PEI GQ, AN XP, XU XM, HAN CY, LIU J, ZHOU CL, TONG YG. Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium[J]. Journal of General Virology, 2014, 95(11):2565-2575.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CAO Hailing, ZHANG Aoqing, WANG Qirui, ZHENG Kexiang, SONG Guosen, ZHANG Xinglin, MA Junfei. Isolation, identification and genome sequencing of a virulent phage infecting Enterococcus faecium[J]. Microbiology China, 2023, 50(11): 5084-5096

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 18,2023
  • Adopted:April 22,2023
  • Online: November 06,2023
  • Published: November 20,2023
Article QR Code