Transcriptome analysis of QsvR regulating gene expression of Vibrio parahaemolyticus with different genetic backgrounds
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [53]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] OpaR is the master quorum sensing regulator of Vibrio parahaemolyticus. QsvR, an AraC-type transcriptional regulator, has reciprocal regulatory activities with OpaR. The regulatory effect of QsvR on gene expression is affected by OpaR, while their relationship in gene regulation remains to be fully elucidated. [Objective] To investigate QsvR regulons in the wild type (WT) and the opaR mutant (ΔopaR), and thus determine the effect of OpaR on the gene regulation of QsvR in V. parahaemolyticus. [Methods] Illumina HiSeq was employed to mine the differentially expressed genes in the qsvR mutant (ΔqsvR) or ΔqsvRΔopaR relative to that in WT or ΔopaR under the biofilm formation growth condition. [Results] QsvR regulated 1 735 genes (regulon 1) in the WT background, including 855 genes activated and 880 genes repressed. QsvR regulated 1 187 genes (regulon 2) in the ΔopaR background, including 533 genes activated and 654 genes repressed. There were 517 common genes shared by regulons 1 and regulons 2, and most of these genes were oppositely regulated by QsvR between the two regulons. According to the results of gene ontology (GO) annotation, 467 and 204 genes from regulons 1 and regulons 2 were respectively annotated to three categories (biological process, molecular function, and cellular component) and thirty sub-categories. The results of Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment showed that 372 and 678 genes from regulons 1 and regulons 2 were respectively enriched in 30 signaling pathways (Q value<0.05). The genes in regulon 1 were mainly enriched in cellular metabolism, genetic information processing, and environmental information processing, and those in regulon 2 in cellular metabolism. The classification results obtained with the cluster of orthologous groups of proteins (COG) showed that the genes in regulons 1 and regulons 2 were mainly involved in amino acid transport and metabolism, signal transduction mechanisms, energy production and conversion, general function prediction only, and function unknown. In addition, the regulons 1 and regulons 2 contained a large number of regulatory genes and putative c-di-GMP metabolism-associated genes, as well as some polar flagellar genes, capsular polysaccharide genes, exopolysaccharide synthesis genes, type IV pili-associated genes, type III secretion system genes, and type VI secretion system genes. [Conclusion] QsvR was a global regulator in V. parahaemolyticus, controlling the transcription of a large number of genes. OpaR affected the regulatory actions of QsvR on its target genes and the composition of QsvR regulon.

    Reference
    [1] LETCHUMANAN V, CHAN KG, LEE LH. Vibrio parahaemolyticus:a review on the pathogenesis, prevalence, and advance molecular identification techniques[J]. Frontiers in Microbiology, 2014, 5:705.
    [2] LI LZ, MENG HM, GU D, LI Y, JIA MD. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis[J]. Microbiological Research, 2019, 222:43-51.
    [3] CAI Q, ZHANG YQ. Structure, function and regulation of the thermostable direct hemolysin (TDH) in pandemic Vibrio parahaemolyticus[J]. Microbial Pathogenesis, 2018, 123:242-245.
    [4] PARK KS, ONO T, ROKUDA M, JANG MH, OKADA K, IIDA T, HONDA T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus[J]. Infection and Immunity, 2004, 72(11):6659-6665.
    [5] YU Y, YANG H, LI J, ZHANG PP, WU BB, ZHU BL, ZHANG Y, FANG WH. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers[J]. Archives of Microbiology, 2012, 194(10):827-835.
    [6] SALOMON D, GONZALEZ H, UPDEGRAFF BL, ORTH K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2[J]. PLoS One, 2013, 8(4):e61086.
    [7] OSEI-ADJEI G, HUANG XX, ZHANG YQ. The extracellular proteases produced by Vibrio parahaemolyticus[J]. World Journal of Microbiology and Biotechnology, 2018, 34(5):68.
    [8] ASHRAFUDOULLA M, MIZAN MFR, PARK SH, HA SD. Current and future perspectives for controlling Vibrio biofilms in the seafood industry:a comprehensive review[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(11):1827-1851.
    [9] SUN JF, LI X, HU ZM, XUE XF, ZHANG MM, WU QM, ZHANG W, ZHANG YQ, LU RF. Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018‒2020[J]. PLoS One, 2022, 17(8):e0273700.
    [10] YILDIZ FH, VISICK KL. Vibrio biofilms:so much the same yet so different[J]. Trends in Microbiology, 2009, 17(3):109-118.
    [11] BALL AS, CHAPARIAN RR, van KESSEL JC. Quorum sensing gene regulation by LuxR/HapR master regulators in vibrios[J]. Journal of Bacteriology, 2017, 199(19):e00105-17.
    [12] LU RF, OSEI-ADJEI G, HUANG XX, ZHANG YQ. Role and regulation of the orphan AphA protein of quorum sensing in pathogenic Vibrios[J]. Future Microbiology, 2018, 13:383-391.
    [13] RUHAL R, KATARIA R. Biofilm patterns in Gram-positive and gram-negative bacteria[J]. Microbiological Research, 2021, 251:126829.
    [14] LI W, WANG JJ, QIAN H, TAN L, ZHANG ZH, LIU HQ, PAN YJ, ZHAO Y. Insights into the role of extracellular DNA and extracellular proteins in biofilm formation of Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2020, 11:813.
    [15] LIU M, NIE HL, LUO XS, YANG SS, CHEN HZ, CAI P. A polysaccharide biosynthesis locus in Vibrio parahaemolyticus important for biofilm formation has homologs widely distributed in aquatic bacteria mainly from Gammaproteobacteria[J]. mSystems, 2022, 7(2):e0122621.
    [16] CHEN YS, DAI JL, MORRIS JR JG, JOHNSON JA. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6[J]. BMC Microbiology, 2010, 10:274.
    [17] MAKINO K, OSHIMA K, KUROKAWA K, YOKOYAMA K, UDA T, TAGOMORI K, IIJIMA Y, NAJIMA M, NAKANO M, YAMASHITA A, KUBOTA Y, KIMURA S, YASUNAGA T, HONDA T, SHINAGAWA H, HATTORI M, IIDA T. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of V. cholerae[J]. The Lancet, 2003, 361(9359):743-749.
    [18] SHIME-HATTORI A, IIDA T, ARITA M, PARK KS, KODAMA T, HONDA T. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation[J]. FEMS Microbiology Letters, 2006, 264(1):89-97.
    [19] KIM YK, McCARTER LL. Analysis of the polar flagellar gene system of Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2000, 182(13):3693-3704.
    [20] STEWART BJ, McCARTER LL. Lateral flagellar gene system of Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2003, 185(15):4508-4518.
    [21] ENOS-BERLAGE JL, GUVENER ZT, KEENAN CE, McCARTER LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus[J]. Molecular Microbiology, 2005, 55(4):1160-1182.
    [22] JOSEPH LA, WRIGHT AC. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation[J]. Journal of Bacteriology, 2004, 186(3):889-893.
    [23] JENAL U, REINDERS A, LORI C. Cyclic di-GMP:second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5):271-284.
    [24] TRIMBLE MJ, McCARTER LL. Bis-(3'‒5')-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(44):18079-18084.
    [25] KIM YK, MCCARTER LL. ScrG, a GGDEF-EAL protein, participates in regulating swarming and sticking in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2007, 189(11):4094-4107.
    [26] KIMBROUGH JH, CRIBBS JT, McCARTER LL. Homologous c-di-GMP-binding Scr transcription factors orchestrate biofilm development in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2020, 202(6):e00723-19.
    [27] KIMBROUGH JH, McCARTER LL. Identification of three new GGDEF and EAL domain-containing proteins participating in the Scr surface colonization regulatory network in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2021, 203(4):e00409-20.
    [28] MARTÍNEZ-MÉNDEZ R, CAMACHO-HERNÁNDEZ DA, SULVARÁN-GUEL E, ZAMORANO-SÁNCHEZ D. A trigger phosphodiesterase modulates the global c-di-GMP pool, motility, and biofilm formation in Vibrio parahaemolyticus[J]. Journal of Bacteriology, 2021, 203(13):e0004621.
    [29] ZHONG XJ, LU Z, WANG F, YAO N, SHI MT, YANG MH. Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence[J]. Applied and Environmental Microbiology, 2022, 88(6):e0223921.
    [30] ZHANG YQ, XUE XF, SUN FJ, LI X, ZHANG MM, WU QM, ZHANG TT, LUO X, LU RF. Quorum sensing and QsvR tightly control the transcription of vpa0607 encoding an active RNase II-type protein in Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2023, 14:1123524.
    [31] ZHANG YQ, HU LH, QIU Y, OSEI-ADJEI G, TANG H, ZHANG Y, ZHANG R, SHENG XM, XU SG, YANG WH, YANG HY, YIN Z, YANG RF, HUANG XX, ZHOU DS. QsvR integrates into quorum sensing circuit to control Vibrio parahaemolyticus virulence[J]. Environmental Microbiology, 2019, 21(3):1054-1067.
    [32] WANG L, LING Y, JIANG HW, QIU YF, QIU JF, CHEN HP, YANG RF, ZHOU DS. AphA is required for biofilm formation, motility, and virulence in pandemic Vibrio parahaemolyticus[J]. International Journal of Food Microbiology, 2013, 160(3):245-251.
    [33] ZHANG MM, XUE XF, LI X, WU QM, ZHANG TT, YANG WH, HU LF, ZHOU DS, LU RF, ZHANG YQ. QsvR and OpaR coordinately repress biofilm formation by Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2023, 14:1079653.
    [34] ZHANG MM, XUE XF, LI X, LUO X, WU QM, ZHANG TT, YANG WH, HU LF, ZHOU DS, LU RF, ZHANG YQ. QsvR represses the transcription of polar flagellum genes in Vibrio parahaemolyticus[J]. Microbial Pathogenesis, 2023, 174:105947.
    [35] LU RF, TANG H, QIU Y, YANG WH, YANG HY, ZHOU DS, HUANG XX, HU LF, ZHANG YQ. Quorum sensing regulates the transcription of lateral flagellar genes in Vibrio parahaemolyticus[J]. Future Microbiology, 2019, 14:1043-1053.
    [36] LU RF, SUN JF, QIU Y, ZHANG MM, XUE XF, LI X, YANG WH, ZHOU DS, HU LF, ZHANG YQ. The quorum sensing regulator OpaR is a repressor of polar flagellum genes in Vibrio parahaemolyticus[J]. Journal of Microbiology, 2021, 59(7):651-657.
    [37] CHEN L, ZHANG MM, LI X, WU QM, XUE XF, ZHANG TT, LU RF, ZHANG YQ. AphA directly activates the transcription of polysaccharide biosynthesis gene scvE in Vibrio parahaemolyticus[J]. Gene, 2023, 851:146980.
    [38] CHEN C, XIE J, HU CQ. Phenotypic and genetic differences between opaque and translucent colonies of Vibrio alginolyticus[J]. Biofouling, 2009, 25(6):525-531.
    [39] MCCARTER LL. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus[J]. Journal of Bacteriology, 1998, 180(12):3166-3173.
    [40] ZHANG YQ, QIU YF, TAN YF, GUO ZB, YANG RF, ZHOU DS. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum-sensing regulator OpaR in Vibrio parahaemolyticus[J]. PLoS One, 2012, 7(4):e34622.
    [41] TAN L, ZHAO F, HAN Q, ZHAO AJ, MALAKAR PK, LIU HQ, PAN YJ, ZHAO Y. High correlation between structure development and chemical variation during biofilm formation by Vibrio parahaemolyticus[J]. Frontiers in Microbiology, 2018, 9:1881.
    [42] PUTRI GH, ANDERS S, PYL PT, PIMANDA JE, ZANINI F. Analysing high-throughput sequencing data in Python with HTSeq 2.0[J]. Bioinformatics, 2022, 38(10):2943-2945.
    [43] WANG Z, GERSTEIN M, SNYDER M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.
    [44] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12):550.
    [45] OSEI-ADJEI G, GAO H, ZHANG Y, ZHANG LY, YANG WH, YANG HY, YIN Z, HUANG XX, ZHANG YQ, ZHOU DS. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus[J]. Oncotarget, 2017, 8(39):65809-65822.
    [46] FERREIRA RBR, CHODUR DM, ANTUNES LCM, TRIMBLE MJ, McCARTER LL. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network[J]. Journal of Bacteriology, 2012, 194(5):914-924.
    [47] KODAMA T, YAMAZAKI C, PARK KS, AKEDA Y, IIDA T, HONDA T. Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS[J]. FEMS Microbiology Letters, 2010, 311(1):10-17.
    [48] ZHOU XH, KONKEL ME, CALL DR. Regulation of type III secretion system 1 gene expression in Vibrio parahaemolyticus is dependent on interactions between ExsA, ExsC, and ExsD[J]. Virulence, 2010, 1(4):260-272.
    [49] LIU AC, THOMAS NA. Transcriptional profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion[J]. Frontiers in Microbiology, 2015, 6:1089.
    [50] RUTHERFORD ST, van KESSEL JC, SHAO Y, BASSLER BL. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios[J]. Genes & Development, 2011, 25(4):397-408.
    [51] O'Boyle N, HOUEIX b, KILCOYNE M, JOSHI L, BOYD A. The MSHA pilus of Vibrio parahaemolyticus has lectin functionality and enables TTSS-mediated pathogenicity[J]. International Journal of Medical Microbiology, 2013, 303(8):563-573.
    [52] FERREIRA RBR, ANTUNES LCM, GREENBERG EP, McCARTER LL. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces[J]. Journal of Bacteriology, 2008, 190(3):851-860.
    [53] QIU Y, HU LF, YANG WH, YIN Z, ZHOU DS, YANG HY, ZHANG YQ. The type VI secretion system 2 of Vibrio parahaemolyticus is regulated by QsvR[J]. Microbial Pathogenesis, 2020, 149:104579.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WANG Jian, XUE Xingfan, ZHANG Miaomiao, LI Xue, YANG Wenhui, HU Lingfei, ZHOU Dongsheng, LU Renfei, ZHANG Yiquan. Transcriptome analysis of QsvR regulating gene expression of Vibrio parahaemolyticus with different genetic backgrounds[J]. Microbiology China, 2023, 50(11): 4988-5014

Copy
Share
Article Metrics
  • Abstract:241
  • PDF: 641
  • HTML: 448
  • Cited by: 0
History
  • Received:March 13,2023
  • Adopted:April 22,2023
  • Online: November 06,2023
  • Published: November 20,2023
Article QR Code