Infection process of Blumeria graminis f. sp. poae BGP(TG) on the leaves of Poa pratensis with different resistance
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • | | | |
  • Comments
    Abstract:

    [Background] Poa pratensis powdery mildew caused by Blumeria graminis f. sp. poae is an airborne disease, and planting resistant species is the most economical, environmentally friendly, and effective method for controlling this disease. [Objective] To observe the infection process of BGP(TG) on the leaves of three P. pratensis species with different resistance and clarify the role of papillae in the resistance of P. pratensis to powdery mildew. [Methods] Coomassie brilliant blue staining was combined with microscopy to observe the infection process of BGP(TG). The rate of secondary germ tube formation and the formation of haustoria and effective papillae in the three species were determined. [Results] The powdery mildew symptoms in ‘Explorer’ were more serious than those in the other two species, and the infection process of BGP(TG) was similar in different species. However, the formation of primary haustoria on the leaves of ‘Explorer’ was earlier than that of the other two species. One- or two-days post inoculation with BGP(TG), the formation of fifth-level germ tubes on the surface of ‘Taihang’ was slower than that of ‘Explorer’ and ‘Black Jack’. One day post inoculation with BGP(TG), more effective papilla was formed on ‘Taihang’ than on ‘Black Jack’, and the effective papilla formation rate on ‘Black Jack’ was higher than that on ‘Explorer’ (P<0.05). [Conclusion] This study clarifies the infection process of B. graminis f. sp. poae and provides a theoretical basis for the prevention and control of powdery mildew in P. pratensis.

    Reference
    [1] LUO HS, ZHOU ZX, SONG GL, YAO HX, HAN LB. Antioxidant enzyme activity and microRNA are associated with growth of Poa pratensis callus under salt stress[J]. Plant Biotechnology Reports, 2020, 14(4):429-438.
    [2] ZHU M, JI J, SHI WQ, LI YF. Occurrence of powdery mildew caused by Blumeria graminis f. sp. poae on Poa pratensis in China[J]. Plant Disease, 2021, 105(4):1212.
    [3] TURGEON AJ. Turfgrass Management[M]. Upper Saddle Rivert:Prentice Hall Inc, 1991.
    [4] SORENG RJ. Chloroplast-dna phylogenetics and biogeography in a reticulating group:study in Poa (Poaceae)[J]. American Journal of Botany, 1990, 77(11):1383-1400.
    [5] YILMAZ A, NISHIYAMA MY Jr, FUENTES BG, SOUZA GM, JANIES D, GRAY J, GROTEWOLD E. GRASSIUS:a platform for comparative regulatory genomics across the grasses[J]. Plant Physiology, 2009, 149(1):171-180.
    [6] SHARIATIPOUR N, HEIDARI B, SHAMS Z, RICHARDS C. Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions[J]. Scientific Reports, 2022, 12:1121.
    [7] 古丽君, 徐秉良, 李彬, 梁巧兰. 草坪禾草根腐病病原菌生物学特性研究[J]. 草业学报, 2012, 21(3):93-98. GU LJ, XU BL, LI B, LIANG QL. Biological characteristics of a pathogen of turfgrass root rot disease[J]. Acta Prataculturae Sinica, 2012, 21(3):93-98(in Chinese).
    [8] 董文科, 马祥, 毛春晖, 邓婧慧, 贾秀秀, 张顺萍, 郭珊珊, 马晖玲. 10个草地早熟禾品种对白粉病的抗性评价及生理特性分析[J]. 草原与草坪, 2020, 40(3):47-56. DONG WK, MA X, MAO CH, DENG JH, JIA XX, ZHANG SP, GUO SS, MA HL. Resistance evaluation and physiological characteristic analysis of ten Poa pratensis varieties to powdery mildew[J]. Grassland and Turf, 2020, 40(3):47-56(in Chinese).
    [9] SUN XY, XIE FC, CHEN YJ, GUO ZX, DONG LL, QIN LG, SHI ZJ, XIONG LB, YUAN RL, DENG WJ, JIANG YW. Glutamine synthetase gene PpGS1.1 negatively regulates the powdery mildew resistance in Kentucky bluegrass[J]. Horticulture Research, 2022, 9:uhac196.
    [10] UMESHA S, RICHARDSON PA, KONG P, HONG CX. A novel indicator plant to test the hypersensitivity of phytopathogenic bacteria[J]. Journal of Microbiological Methods, 2008, 72(1):95-97.
    [11] 董文科. 草地早熟禾抗白粉病机理研究[D]. 兰州:甘肃农业大学博士学位论文, 2020. DONG WK. Study on the resistance mechanism of Poa pratensis to powdery mildew (Blumeria graminis D)[D]. Lanzhou:Doctoral Dissertation of Gansu Agricultural University, 2020(in Chinese).
    [12] 韩冬. 抗锈病红小豆品种筛选及抗病机理研究[D]. 大庆:黑龙江八一农垦大学硕士学位论文, 2017. HAN D. Screening cultivars of resistant to rust and the resistant mechanism to rust of adzuki bean[D]. Daqing:Masterʼs Thesis of Heilongjiang Bayi Agricultural University, 2017(in Chinese).
    [13] 丁卓. 甜瓜抗感材料响应单囊壳白粉病菌侵染的生理生化差异分析[D]. 哈尔滨:东北农业大学硕士学位论文, 2021. DING Z. Physiological and biochemical differences analysis of resistance and susceptible Melon lines in response to Podosphaera xanthii infection[D]. Harbin:Master's Thesis of Northeast Agricultural University, 2021(in Chinese).
    [14] 谢联辉. 普通植物病理学[M]. 2版. 北京:科学出版社, 2013. XIE LH. General Plant Pathology[M]. 2nd ed. Beijing:Science Press, 2013(in Chinese).
    [15] SOOD M, KAPOOR D, KUMAR V, KALIA N, BHARDWAJ R, SIDHU GPS, SHARMA A. Mechanisms of plant defense under pathogen stress:a review[J]. Current Protein & Peptide Science, 2021, 22(5):376-395.
    [16] 兰世超, 姜山. 病原体胁迫下植物细胞壁的变化[J]. 贵州科学, 2013, 31(3):17-24, 29. LAN SC, JIANG S. Change in the cell walls of plants on pathogen stress[J]. Guizhou Science, 2013, 31(3):17-24, 29(in Chinese).
    [17] ZEYEN RJ, CARVER TLW, LYNGKJAER MF. Epidermal cell papillae[J]. Powdery Mildews A Comprehensive Treatise, 2002:107-125.
    [18] THORDAL-CHRISTENSEN H, GREGERSEN PL, COLLINGE DB. The barley/Blumeria (syn. Erysiphe) graminis interaction[M]//Mechanisms of Resistance to Plant Diseases. Dordrecht:Springer Netherlands, 2000:77-100.
    [19] SUZUKI T, SHINOGI T, NARUSAKA Y, PARK P. Infection behavior of Alternaria alternata Japanese pear pathotype and localization of 1,3-β-d-glucan in compatible and incompatible interactions between the pathogen and host plants[J]. Journal of General Plant Pathology, 2003, 69(2):91-100.
    [20] 魏晓羽, 王跃进. 中国野生葡萄果皮解剖结构与白粉病抗性的相关性研究[J]. 园艺学报, 2022, 49(6):1200-1212. WEI XY, WANG YJ. Correlation between anatomical structure and resistance to powdery mildew in Chinese wild Vitis species[J]. Acta Horticulturae Sinica, 2022, 49(6):1200-1212(in Chinese).
    [21] 李伟东. 四个小麦品种上白粉菌的侵染过程观察及基因差异表达分析[D]. 成都:四川农业大学硕士学位论文, 2015. LI WD. Differential display of wheat powdery mildew on four wheat cultivars by means of reverse transcription-polymerase chain reaction[D]. Chengdu:Masterʼs Thesis of Sichuan Agricultural University, 2015(in Chinese).
    [22] 朱琨, 郑桂华, 刘丽杰, 周璐, 李珊珊, 范震宇, 钟玥, 尼尼. 草地早熟禾叶片表皮解剖结构与抗白粉病性的研究[J]. 草地学报, 2021, 29(7):1430-1435. ZHU K, ZHENG GH, LIU LJ, ZHOU L, LI SS, FAN ZY, ZHONG Y, NI N. Study on anatomical structure of leaf epidermis and powdery mildew resistance in Poa pratensis[J]. Acta Agrestia Sinica, 2021, 29(7):1430-1435(in Chinese).
    [23] CHOWDHURY J, HENDERSON M, SCHWEIZER P, BURTON RA, FINCHER GB, LITTLE A. Differential accumulation of callose, Arabinoxylan and cellulose in nonpenetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp. hordei[J]. New Phytologist, 2014, 204(3):650-660.
    [24] 梁银萍. 携带Pm40小麦抗白粉病的细胞学和蛋白质组学研究[D]. 成都:四川农业大学博士学位论文, 2020. LIANG YP. The cytology and proteome studies on the resistance of wheat carrying Pm40 against Blumeria graminis f. sp. tritici[D]. Chengdu:Doctoral Dissertation of Sichuan Agricultural University, 2020(in Chinese).
    [25] 陈宇. 小麦白粉病菌侵入阶段的观察[J]. 西南农业大学学报, 1989, 11(4):336-339. CHEN Y. Examination of primary infection by wheat powdery mildew[J]. Journal of Southwest Agricultural University, 1989, 11(4):336-339(in Chinese).
    [26] 张军科, 罗世杏, 李小伟, 王跃进. 白粉菌在不同抗病性葡萄叶片上的侵染过程比较[J]. 西北农林科技大学学报(自然科学版), 2008, 36(3):161-165, 170. ZHANG JK, LUO SX, LI XW, WANG YJ. Comparisons on the Uncinula necator invasion procedure of resistant and susceptible grapes[J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(3):161-165, 170(in Chinese).
    [27] 李健强. 小麦被白粉菌侵染所致结构、化学变化及其与抗病性的关系[J]. 植物病理学报, 1997, 27(4):289-292. LI JQ. Changes of structure and chemistry of wheat infected by powdery mildew and ITS relation to resistance[J]. Plant Pathology, 1997, 27(4):289-292(in Chinese).
    [28] CHANG XL, LUO LY, LIANG YP, HU YT, LUO PG, GONG GS, CHEN HB, KHASKHELI MI, LIU TG, CHEN WQ, ZHANG M. Papilla formation, defense gene expression and HR contribute to the powdery mildew resistance of the novel wheat line L699 carrying Pm40 gene[J]. Physiological and Molecular Plant Pathology, 2019, 106:208-216.
    [29] LIU RQ, WANG L, ZHU JL, CHEN TT, WANG YJ, XU Y. Histological responses to downy mildew in resistant and susceptible grapevines[J]. Protoplasma, 2015, 252(1):259-270.
    [30] 高启帆, 孙敬贤, 王刚, 何欢乐, 蔡润, 潘俊松. 黄瓜白粉病菌在不同抗性黄瓜材料上的侵染过程[J]. 植物保护, 2021, 47(2):28-36. GAO QF, SUN JX, WANG G, HE HL, CAI R, PAN JS. The infection process of Sphaerotheca fuliginea on different resistant cucumber materials[J]. Plant Protection, 2021, 47(2):28-36(in Chinese).
    [31] 许志宇. 草地早熟禾种质白粉病抗性评价与机制初探[D]. 晋中:山西农业大学硕士学位论文, 2023. XU ZY. Evaluation and mechanism preliminary study of powdery mildew resistance in Poa pratensis L. germplasms[D]. Jinzhong:Masterʼs Thesis of Shanxi Agricultural University, 2023(in Chinese).
    [32] HU YT, LIANG YP, ZHANG M, TAN FQ, ZHONG SF, LI X, GONG GS, CHANG XL, SHANG J, TANG SW, LI T, LUO PG. Comparative transcriptome profiling of Blumeria graminis f.sp. tritici during compatible and incompatible interactions with sister wheat lines carrying and lacking Pm40[J]. PLoS One, 2018, 13(7):e0198891.
    [33] 张学博. 小麦Pm40基因调控的白粉菌早期侵染抑制及表达序列分析[D]. 成都:四川农业大学硕士学位论文, 2013. ZHANG XB. Primary infection suppression of Blumeria graminis f. sp. tritici regulated by wheat Pm40 gene and ESTS analysis in wheat[D]. Chengdu:Master's Thesis of Sichuan Agricultural University, 2013(in Chinese).
    [34] AGHNOUM R, NIKS RE. Specificity and levels of nonhost resistance to nonadapted Blumeria graminis forms in barley[J]. New Phytologist, 2010, 185(1):275-284.
    [35] MEYER D, PAJONK S, MICALI C, O'CONNELL R, SCHULZE-LEFERT P. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments[J]. The Plant Journal, 2009, 57(6):986-999.
    [36] 郭卫丽, 郭言言, 李新峥. 南瓜幼苗期白粉菌的侵染过程与材料抗性间的关系[C]//中国园艺学会南瓜研究分会2017年学术年会, 2017. GUO WL, GUO YY, LI XZ. Relationship between powdery mildew infection process and resistance in Pumpkin seedlings[C]//Chinese Horticultural Society Pumpkin Research Branch 2017 Annual Academic Conference, 2017(in Chinese).
    [37] BRACKET CE. The ultrastructure of the haustorial apparatus of Erysiphe graminis and its relationship to the epidermal cell of barley[J]. Phytopathology, 1968, 58:12-30.
    [38] 章珍, 刘新红, 翟洪翠, 王华忠. 小麦Pm21基因调控的白粉菌早期侵染抑制和寄主细胞反应[J]. 作物学报, 2011, 37(1):67-73. ZHANG Z, LIU XH, ZHAI HC, WANG HZ. Primary infection suppression of Blumeria graminis f. sp. tritici and host cell responses regulated by Pm21 gene in wheat[J]. Acta Agronomica Sinica, 2011, 37(1):67-73(in Chinese).
    [39] 周威, 李彩霞, 王飞, 许晓风, 石志琦. 白粉病菌入侵对不同抗性南瓜品种的病理和生理影响[J]. 安徽农业科学, 2007, 35(6):1711-1713, 1755. ZHOU W, LI CX, WANG F, XU XF, SHI ZQ. Changes of histopathology and isozymes in susceptible and resistant Pumpkin cultivars penetrated by Podosphaera xanthii[J]. Journal of Anhui Agricultural Sciences, 2007, 35(6):1711-1713, 1755(in Chinese).
    [40] HÜCKELHOVEN R. Powdery mildew susceptibility and biotrophic infection strategies[J]. FEMS Microbiology Letters, 2005, 245(1):9-17.
    [41] HÜCKELHOVEN R. Cell wall-associated mechanisms of disease resistance and susceptibility[J]. Annual Review of Phytopathology, 2007, 45:101-127.
    [42] ALBERSHEIM P, DATVILL A, ROBERTS K, SEDEROFF R, STAEHELIN A. Cell Walls and Plant-Microbe Interactions[M]. New York:Taylor & Francis, 2011.
    [43] LI AL, WANG ML, ZHOU RH, KONG XY, HUO NX, WANG WS, JIA JZ. Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions[J]. Plant Pathology, 2005, 54(3):308-316.
    [44] Sun YH, LI XZ, ZHANG QZ, ZHANG XJ, MA ZY, HONG YY, ZHANG LL, CHEN SX. The reverse mutation of CsMLO8 results in susceptibility to powdery mildew via inhibiting cell wall apposition formation and cell death in cucumber (Cucumis sativus L.)[J]. Scientia Horticulturae, 2023, 313:111894.
    [45] LIANG YP, XIA Y, CHANG XL, GONG GS, YANG JZ, HU YT, CAHILL M, LUO LY, LI T, HE L, ZHANG M. Comparative proteomic analysis of wheat carrying Pm40 response to Blumeria graminis f. sp. tritici using two-dimensional electrophoresis[J]. International Journal of Molecular Sciences, 2019, 20(4):933.
    [46] 王阿旺, 傅俊范, 刘博, 周如军. 草莓品种对白粉病菌抗性的组织病理学研究[J]. 植物保护, 2009, 35(6):52-55. WANG AW, FU JF, LIU B, ZHOU RJ. Histopathological study on strawberry cultivar's resistance to Sphaerotheca aphanis[J]. Plant Protection, 2009, 35(6):52-55(in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIANG Yinping, XU Zhiyu, SUN Xiaohan, FAN Le, SHI Lingjun, ZHU Huisen, XU Qingfang, ZHAO Xiang. Infection process of Blumeria graminis f. sp. poae BGP(TG) on the leaves of Poa pratensis with different resistance[J]. Microbiology China, 2023, 50(11): 4839-4851

Copy
Share
Article Metrics
  • Abstract:228
  • PDF: 791
  • HTML: 789
  • Cited by: 0
History
  • Received:July 13,2023
  • Adopted:August 17,2023
  • Online: November 06,2023
  • Published: November 20,2023
Article QR Code