Overexpression of GlPNP, a gene positively correlated with adenosine biosynthesis, increases the adenosine content of Ganoderma lucidum
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • | | | |
  • Comments
    Abstract:

    [Background] Ganoderma lucidum is a precious Chinese medicinal herb with both medicinal and edible values. Adenosine, one of the active components, endows the herb with immunomodulatory, anti-inflammatory, and anti-tumor activities. [Objective] To regulate the expression of key genes involved in adenosine biosynthesis to increase the adenosine production of G. lucidum. [Methods] We studied the correlations of the expression of adenosine synthase genes (GlATIC,GlPNP, and GlADK) with the adenosine content. The key enzyme genes that were positively correlated with the adenosine content of G. lucidum were screened out. The key enzyme genes in G. lucidum were cloned and overexpressed to investigate the effect of key enzyme gene overexpression on adenosine accumulation. [Results] The expression of GlPNP was positively correlated with adenosine content. The key gene GlPNP was cloned and overexpressed in G. lucidum. The cDNA of GlPNP was 969 bp in length. GlPNP displayed a trimeric quaternary structure, with a predicted molecular weight of 34.6 kDa. The expression levels of GlPNP in the transformants were 2.9–3.9 folds higher than that of the wild type on day 4. The adenosine content in the transformants increased by 78% and 63%, respectively, compared with that in the strain transformed with the blank vector. [Conclusion] Overexpression of GlPNP is an effective strategy to increase the production of adenosine.

    Reference
    [1] AHMAD R, RIAZ M, KHAN A, ALJAMEA A, ALGHERYAFI M, SEWAKET D, ALQATHAMA A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties[J]. Phytotherapy Research:PTR, 2021, 35(11):6030-6062.
    [2] 颜梦秋, 刘艳芳, 周帅, 唐传红, 冯杰, 张劲松. 食药用菌液体发酵及功能活性成分研究现状与展望[J].微生物学通报, 2023. DOI:10.13344/j.microbiol.china.220981 YAN MQ, LIU YF, ZHOU S, TANG CH, FENG J, ZHANG JS. Liquid fermentation technology and functional components of edible and medicinal fungi[J]. Microbiology China, 2023. DOI:10.13344/j.microbiol.china.220981(in Chinese).
    [3] 师小凡, 刘艳芳, 唐传红, 冯杰, 唐庆九, 王金艳, 韩伟, 张劲松. 沪农系列灵芝新品种活性成分及免疫活性对比研究[J]. 食用菌学报, 2023, 30(1):64-72. SHI XF, LIU YF, TANG CH, FENG J, TANG QJ, WANG JY, HAN W, ZHANG JS. Comparative study on active components and immune activity of new varieties of Ganoderma lucidum in Shanghai-Nong series[J]. Acta Edulis Fungi, 2023, 30(1):64-72(in Chinese).
    [4] BOISON D, YEGUTKIN GG. Adenosine metabolism:emerging concepts for cancer therapy[J]. Cancer Cell, 2019, 36(6):582-596.
    [5] LI H, DU YW, JI HR, YANG YN, XU CC, LI QD, RAN LK, WU CM, ZHOU QL, WU SX. Adenosine-rich extract of Ganoderma lucidum:a safe and effective lipid-lowering substance[J]. iScience, 2022, 25(11):105214.
    [6] SOLAKOV N, KOSTOVA M, LOGINOVSKA K, MARKOV Z, de OLIVEIRA AC, MUHOVSKI Y. Investigation of adenosine precursors and biologically active peptides in cultured fresh mycelium of wild medicinal mushrooms[J]. Applied Sciences, 2022, 12(20):10618.
    [7] GAO JL, LEUNG KSY, WANG YT, LAI CM, LI SP, HU LF, LU GH, JIANG ZH, YU ZL. Qualitative and quantitative analyses of nucleosides and nucleobases in Ganoderma spp. by HPLC-DAD-MS[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44(3):807-811.
    [8] QIAN ZM, LI WQ, WANG CX, ZHOU MX, SUN MT, GAO H, LI WJ. Quantitative analysis of nucleosides in four Cordyceps genus by HPLC[J]. Zhongguo Zhong Yao Za Zhi, 2016, 41(13):2493-2499.
    [9] KE BJ, LEE CL. Using submerged fermentation to fast increase N6-(2-hydroxyethyl)-adenosine, adenosine and polysaccharide productions of Cordyceps cicadae NTTU 868[J].AMB Express, 2019, 9(1):1-9.
    [10] LI B, YAN ZY, LIU XN, ZHOU J, WU XY, WEI P, JIA HH, YONG XY. Increased fermentative adenosine production by gene-targeted Bacillus subtilis mutation[J]. Journal of Biotechnology, 2019, 298:1-4.
    [11] ZHANG JY, JIAN TT, ZHANG Y, ZHANG GY, LING JY. Dynamic content changes of cordycepin and adenosine and transcriptome in Cordyceps kyushuensis Kob at different fermentation stages[J]. Bioprocess and Biosystems Engineering, 2021, 44(8):1793-1803.
    [12] CAMICI M, ALLEGRINI S, TOZZI MG. Interplay between adenylate metabolizing enzymes and AMP-activated protein kinase[J]. The FEBS Journal, 2018, 285(18):3337-3352.
    [13] HOVE-JENSEN B, ANDERSEN KR, KILSTRUP M, MARTINUSSEN J, SWITZER RL, WILLEMOËS M. Phosphoribosyl diphosphate (PRPP):biosynthesis, enzymology, utilization, and metabolic significance[J]. Microbiology and Molecular Biology Reviews, 2017, 81(1):e00040-16.
    [14] DEWULF JP, MARIE S, NASSOGNE MC. Disorders of purine biosynthesis metabolism[J]. Molecular Genetics and Metabolism, 2022, 136(3):190-198.
    [15] ASHIHARA H, STASOLLA C, FUJIMURA T, CROZIER A. Purine salvage in plants[J]. Phytochemistry, 2018, 147:89-124.
    [16] LIECHTI G, GOLDBERG JB. Helicobacter pylori relies primarily on the purine salvage pathway for purine nucleotide biosynthesis[J]. Journal of Bacteriology, 2012, 194(4):839-854.
    [17] BZOWSKA A, KULIKOWSKA E, SHUGAR D. Purine nucleoside phosphorylases:properties, functions, and clinical aspects[J]. Pharmacology & Therapeutics, 2000, 88(3):349-425.
    [18] BOISON D, JARVIS MF. Adenosine kinase:a key regulator of purinergic physiology[J]. Biochemical Pharmacology, 2021, 187:114321.
    [19] HE JX, ZOU LN, PAREEK V, BENKOVIC SJ. Multienzyme interactions of the de novo purine biosynthetic protein PAICS facilitate purinosome formation and metabolic channeling[J]. Journal of Biological Chemistry, 2022, 298(5):101853.
    [20] KROPOTOV A, KULIKOVA V, SOLOVJEVA L, YAKIMOV A, NERINOVSKI K, SVETLOVA M, SUDNITSYNA J, PLUSNINA A, ANTIPOVA M, KHODORKOVSKIY M, MIGAUD ME, GAMBARYAN S, ZIEGLER M, NIKIFOROV A. Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells[J]. Journal of Biological Chemistry, 2022, 298(12):102615.
    [21] HEINEMANN KJ, YANG SY, STRAUBE H, MEDINA-ESCOBAR N, VARBANOVA-HERDE M, HERDE M, RHEE S, WITTE CP. Initiation of cytosolic plant purine nucleotide catabolism involves a monospecific xanthosine monophosphate phosphatase[J]. Nature Communications, 2021, 12(1):6846.
    [22] ZHU YX, ZHANG SS, YU JJ. ZmAdSS1 encodes adenylosuccinate synthetase and plays a critical role in maize seed development and the accumulation of nutrients[J]. Plant Science, 2023, 330:111644.
    [23] LIU DB, GONG J, DAI WK, KANG XC, HUANG Z, ZHANG HM, LIU W, LIU L, MA JP, XIA ZL, CHEN YX, CHEN YW, WANG DP, NI PX, GUO AY, XIONG XY. The genome of Ganoderma lucidum provides insights into triterpenes biosynthesis and wood degradation[J]. PLoS One, 2012, 7(5):e36146.
    [24] KANG XC, LIU CC, SHEN PY, HU LQ, LIN RM, LING J, XIONG XY, XIE BY, LIU DB. Genomic characterization provides new insights into the biosynthesis of the secondary metabolite huperzine a in the endophyte Colletotrichum gloeosporioides Cg01[J]. Frontiers in Microbiology, 2019, 9:3237.
    [25] LIU GF, CHENG TT, CHU JL, LI S, HE BF. Efficient synthesis of purine nucleoside analogs by a new trimeric purine nucleoside phosphorylase from Aneurinibacillus migulanus AM007[J]. Molecules (Basel, Switzerland), 2019, 25(1):100.
    [26] ZHOU XR, YAN WZ, ZHANG C, YANG ZY, NEUBAUER P, MIKHAILOPULO IA, HUANG Z. Biocatalytic synthesis of seleno-, thio- and chloro-nucleobase modified nucleosides by thermostable nucleoside phosphorylases[J]. Catalysis Communications, 2019, 121:32-37.
    [27] ZHU SZ, SONG DW, GONG CY, TANG P, LI XZ, WANG JJ, ZHENG GJ. Biosynthesis of nucleoside analogues via thermostable nucleoside phosphorylase[J]. Applied Microbiology and Biotechnology, 2013, 97(15):6769-6778.
    [28] TOMOIKE F, KURAMITSU S, MASUI R. Unique substrate specificity of purine nucleoside phosphorylases from Thermus thermophilus[J]. Extremophiles, 2013, 17(3):505-514.
    [29] 杨书尧, 刘莉, 马跃超, 陈宁, 谢希贤. 过表达PNP对肌苷生产菌合成利巴韦林的影响[J].天津科技大学学报, 2015, 30(3):14-18. YANG SY, LIU L, MA YC, CHEN N, XIE XX. Effect of overexpression of purine nucleoside phosphorylase on ribavirin production from inosine producing strain[J]. Journal of Tianjin University of Science & Technology, 2015, 30(3):14-18(in Chinese).
    [30] 张洋, 杜姗姗, 谢希贤, 徐庆阳, 陈宁. 过表达purA基因对腺苷积累的影响[J]. 中国生物工程杂志, 2011, 31(12):22-26. ZHANG Y, DU SS, XIE XX, XU QY, CHEN N. Effect of purA gene overexpression on adenosine accumulation[J]. China Biotechnology, 2011, 31(12):22-26(in Chinese).
    [31] 王凯, 姬晓兵, 徐欢欢, 仇申珅, 邹少兰. 整合过表达嘌呤代谢途径关键酶基因提高酿酒酵母菌株环磷酸腺苷产量[J]. 食品与发酵工业, 2016, 42(8):25-30. WANG K, JI XB, XU HH, QIU SS, ZOU SL. Over-expressing key enzyme genes in the purine synthesis pathway by integrating into genome improves cyclic adenosine monophosphate production by Saccharomyces cerevisiae[J]. Food and Fermentation Industries, 2016, 42(8):25-30(in Chinese).
    [32] 陈云, 赵丽婷, 顾正华, 李由然, 石贵阳, 丁重阳. 糖基转移酶GL24971对灵芝多糖合成的影响[J]. 食品与发酵工业, 2021, 47(23):1-7. CHEN Y, ZHAO LT, GU ZH, LI YR, SHI GY, DING ZY. Effect of glycosyltransferase GL24971 on polysaccharide synthesis in Ganoderma lucidum[J]. Food and Fermentation Industries, 2021, 47(23):1-7(in Chinese).
    [33] BAILEY JE. Lessons from metabolic engineering for functional genomics and drug discovery[J]. Nature Biotechnology, 1999, 17(7):616-618.
    [34] MANZANO D, FERNÁNDEZ-BUSQUETS X, SCHALLER H, GONZÁLEZ V, BORONAT A, ARRÓ M, FERRER A. The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity[J]. Planta, 2004, 219(6):982-992.
    [35] SAINT-MARC C, CESCHIN J, ALMYRE C, PINSON B, DAIGNAN-FORNIER B. Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae[J]. Current Genetics, 2020, 66(6):1163-1177.
    [36] ZHANG DH, JIANG LX, LI N, YU XY, ZHAO P, LI T, XU JW. Overexpression of the squalene epoxidase gene alone and in combination with the 3-hydroxy-3-methylglutaryl coenzyme A gene increases ganoderic acid production in Ganoderma lingzhi[J]. Journal of Agricultural and Food Chemistry, 2017, 65(23):4683-4690.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHU Yating, XIAO Zhengpeng, ZHOU Jiali, YU Zhen, LIU Teng, YUAN Jiao, KANG Xincong, LIU Dongbo. Overexpression of GlPNP, a gene positively correlated with adenosine biosynthesis, increases the adenosine content of Ganoderma lucidum[J]. Microbiology China, 2023, 50(10): 4401-4412

Copy
Share
Article Metrics
  • Abstract:290
  • PDF: 816
  • HTML: 592
  • Cited by: 0
History
  • Received:February 16,2023
  • Adopted:March 23,2023
  • Online: October 07,2023
  • Published: October 20,2023
Article QR Code