Research status and prospect of the synthesis of friedelin and its derivatives by Saccharomyces cerevisiae
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [87]
  • | | | |
  • Comments
    Abstract:

    Friedelin and its derivatives are ubiquitous in plants, with a wide variety of physiological and pharmacological activities. The derivatives of friedelin are modified from friedelin by cytochrome P450 oxidase (CYP450) and UDP-glucuronosyltransferase (UGT). Because of the extremely low content of natural friedelin and its derivatives in plants, the traditional extraction and chemical synthesis methods are inefficient, energy-consuming, and pollute the environment. Therefore, using Saccharomyces cerevisiae as the host bacteria to produce friedelin and its derivatives is an efficient and environmentally friendly approach. In this paper, we introduced and looked forward to the efficient production of friedelin in S. cerevisiae from the aspects of increasing precursor content, improving enzyme activity, and subcellular localization of product synthesis. In addition, this paper reviewed the current research status of several common friedelin derivatives, and put forward new ways for the synthesis of friedelin derivatives from the aspects of mining CYP450 based on carbon skeleton similarity, modifying CYP450 by protein engineering, and mining the gene clusters involved in the synthesis.

    Reference
    [1] WANG ZH, YEATS T, HAN H, JETTER R. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids[J]. The Journal of Biological Chemistry, 2010, 285(39): 29703-29712.
    [2] 宁若男, 贾冬玲, 王晓婧, 徐佳琦. 独子藤中1个新的木栓烷型三萜[J]. 中草药, 2022, 53(2): 342-346. NING RN, JIA DL, WANG XJ, XU JQ. A new friedelane triterpene from Celastrus monospermus[J]. Chinese Traditional and Herbal Drugs, 2022, 53(2): 342-346 (in Chinese).
    [3] 陈耀祖, 刘家良, 黄慧民, 海景. 巧茶中木栓烷型三萜的分离和结构鉴定[J]. 华南农业大学学报, 1998, 19(2): 123-134. CHEN YZ, LIU JL, HUANG HM, HAI J. Isolation and structrual identification of the triterpenes of Catha exulis[J]. Journal of South China Agricultural University, 1998, 19(2): 123-134 (in Chinese).
    [4] 李平, 隆李萍, 陶娥, 王淼, 齐世洲, 刘婷, 高慧媛. 雀儿舌头化学成分的分离与鉴定[J].沈阳药科大学学报, 2022, 39(10): 1197-1203. LI PING, LONG LP, TAO E, WANG M, QI SZ, LIU T, GAO HY. Isolation and identification of chemical constituents from Leptopus chinensis (Bunge) Pojark[J]. Journal of Shenyang Pharmaceutical University, 2022, 39(10): 1197-1203 (in Chinese).
    [5] 王辉, 熊志勇, 陈泽宇, 曾和平. 滇南红厚壳叶中木栓内酯的分离、结构鉴定及诱导干细胞增殖作用[J]. 云南大学学报(自然科学版), 2010, 32(6): 690-694. WANG H, XIONG ZY, CHEN ZY, ZENG HP. Separation, structural characterization and inducing proliferation activity of Friedelin-3,4-lacton from Calophyllum polyanthum[J]. Journal of Yunnan University (Natural Sciences Edition), 2010, 32(6): 690-694 (in Chinese).
    [6] 陈铭祥, 杨雪梅, 廖泽纯, 郑鸿宇, 黄丽乔, 郑明彬. 独子藤茎脂溶性化学成分研究[J].中国中药杂志, 2018, 43(2): 336-344. CHEN MX, YANG XM, LIAO ZC, ZHENG HY, HUANG LQ, ZHENG MB. Chemical constituents from lipophilic parts of stems of Celastrus monospermus[J]. China Journal of Chinese Materia Medica, 2018, 43(2): 336-344 (in Chinese).
    [7] LIMA NM, de MARQUI SR, ANDRADE TJAS, SILVA DHS. Phytochemical, metabolic profiling and antiparasitic potential from Inga semialata leaves (Fabaceae)[J]. Natural Product Research, 2022, 36(7): 1898-1903.
    [8] VISTUBA JP, PIOVEZAN M, PIZZOLATTI MG, REBELO AM, AZEVEDO MS, VITALI L, COSTA ACO, AMADEU MICKE G. Increasing the instrumental throughput of gas chromatography method using multiple injections in a single experimental run: application in determination of friedelan-3-ol and friedelin in Maytenus ilicifolia[J]. Journal of Chromatography A, 2013, 1274: 159-164.
    [9] 胡智慧, 谌柄旭, 于爱群, 肖冬光. 代谢工程改造酿酒酵母合成植物萜类D-柠檬烯的策略[J]. 微生物学报, 2018, 58(9): 1542-1550. HU ZH, CHEN BX, YU AQ, XIAO DG. Strategies of metabolic engineering Saccharomyces cerevisiae to produce plant-derived D-limonene[J]. Acta Microbiologica Sinica, 2018, 58(9): 1542-1550 (in Chinese).
    [10] WU SQ, SCHALK M, CLARK A, MILES RB, COATES R, CHAPPELL J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants[J]. Nature Biotechnology, 2006, 24(11): 1441-1447.
    [11] 李媛, 张爱丽, 周伟, 钱子刚. 酿酒酵母基因工程菌的构建及工艺优化研究进展[J]. 中国民族民间医药, 2016, 25(18): 5-7. LI Y, ZHANG AL, ZHOU W, QIAN ZG. Current progress on the construction and optimization of genetically engineered Saccharomyces cerevisiae[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2016, 25(18): 5-7 (in Chinese).
    [12] MOSES T, POLLIER J, THEVELEIN JM, GOOSSENS A. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro[J]. New Phytologist, 2013, 200(1): 27-43.
    [13] YAO Z, ZHOU PP, SU BM, SU SS, YE LD, YU HW. Enhanced isoprene production by reconstruction of metabolic balance between strengthened precursor supply and improved isoprene synthase in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(9): 2308-2316.
    [14] ZHOU JW, HU TY, GAO LH, SU P, ZHANG YF, ZHAO YJ, CHEN S, TU LC, SONG YD, WANG X, HUANG LQ, GAO W. Friedelane-type triterpene cyclase in celastrol biosynthesis from Tripterygium wilfordii and its application for triterpenes biosynthesis in yeast[J]. New Phytologist, 2019, 223(2): 722-735.
    [15] BICALHO KU, SANTONI MM, ARENDT P, ZANELLI CF, FURLAN M, GOOSSENS A, POLLIER J. CYP712K4 catalyzes the C-29 oxidation of friedelin in the Maytenus ilicifolia quinone methide triterpenoid biosynthesis pathway[J]. Plant and Cell Physiology, 2019, 60(11): 2510-2522.
    [16] HAN JY, AHN CH, ADHIKARI PB, KONDETI S, CHOI YE. Functional characterization of an oxidosqualene cyclase (PdFRS) encoding a monofunctional friedelin synthase in Populus davidiana[J]. Planta, 2019, 249(1): 95-111.
    [17] GAO HY, ZHAO H, HU TY, JIANG ZQ, XIA M, ZHANG YF, LU Y, LIU Y, YIN Y, CHEN XC, LUO YF, ZHOU JW, WANG JD, GAO J, GAO W, HUANG LQ. Metabolic engineering of Saccharomyces cerevisiae for high-level friedelin via genetic manipulation[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 805429.
    [18] LIU JJ, CHEN C, WAN XK, YAO G, BAO SH, WANG FL, WANG K, SONG TY, HAN PG, JIANG H. Identification of the sesquiterpene synthase AcTPS1 and high production of (-)-germacrene D in metabolically engineered Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2022, 21(1): 89.
    [19] YU Y, CHANG PC, YU H, REN HY, HONG DN, LI ZY, WANG Y, SONG H, HUO YX, LI C. Productive amyrin synthases for efficient α-amyrin synthesis in engineered Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(10): 2391-2402.
    [20] BRÖKER JN, MÜLLER B, van DEENEN N, PRÜFER D, GRONOVER CS. Upregulating the mevalonate pathway and repressing sterol synthesis in Saccharomyces cerevisiae enhances the production of triterpenes[J]. Applied Microbiology and Biotechnology, 2018, 102(16): 6923-6934.
    [21] ZHAO YJ, FAN JJ, WANG C, FANG XD, LI C. Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae[J]. Bioresource Technology, 2018, 257: 339-343.
    [22] LI T, LIU GS, ZHOU W, JIANG M, REN YH, TAO XY, LIU M, ZHAO M, WANG FQ, GAO B, WEI DZ. Metabolic engineering of Saccharomyces cerevisiae to overproduce squalene[J]. Journal of Agricultural and Food Chemistry, 2020, 68(7): 2132-2138.
    [23] 李月, 庞亚如, 成旭, 李春, 吕波. 酿酒酵母中胆固醇生物合成与优化的研究进展[J]. 微生物学通报, 2022, 49(11): 4869-4885. LI Y, PANG YR, CHENG X, LI C, LÜ B. Biosynthesis and optimization of cholesterol in Saccharomyces cerevisiae[J]. Microbiology China, 2022, 49(11): 4869-4885 (in Chinese).
    [24] 刘远, 屠李婵, 卢鋆, 夏梦, 高伟. 雷公藤中2,3-氧化鲨烯环化酶基因家族分析及功能表征[J]. 药学学报, 2021, 56(12): 3370-3376. LIU Y, TU LC, LU Y, XIA M, GAO W. Identification and functional characterization of 2,3-oxidosqualene cyclase genes family in Tripterygium wilfordii[J]. Acta Pharmaceutica Sinica, 2021, 56(12): 3370-3376 (in Chinese).
    [25] 陈翠玉, 庞亚如, 陈泉冰, 李春, 吕波. 环氧角鲨烯环化酶在三萜化合物生物合成中的进展[J]. 生物工程学报, 2022, 38(2): 443-459. CHEN CY, PANG YR, CHEN QB, LI C, LÜ B. Oxidosqualene cyclases in triterpenoids biosynthesis: a review[J]. Chinese Journal of Biotechnology, 2022, 38(2): 443-459 (in Chinese).
    [26] 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. LI JX, CAI QR, WU JQ. Research progresses on the synthetic biology of terpenes in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2020, 36(12): 199-207 (in Chinese).
    [27] TESKE B, TARAMINO S, BHUIYAN MA, KUMARASWAMI NS, RANDALL SK, BARBUCH R, ECKSTEIN J, BALLIANO G, BARD M. Genetic analyses involving interactions between the ergosterol biosynthetic enzymes, lanosterol synthase (Erg7p) and 3-ketoreductase (Erg27p), in the yeast Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2008, 1781(8): 359-366.
    [28] ZHANG YY, WANG J, CAO XS, LIU W, YU H, YE LD. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology, 2020, 134: 109462.
    [29] WANG QH, GAO LL, LIANG HC, DU GH, GONG T, YANG JL, ZHU P. Downregulation of lanosterol synthase gene expression by antisense RNA technology in Saccharomyces cerevisiae[J]. Acta Pharmaceutica Sinica, 2015, 50(1): 118-122.
    [30] YANG XY, LIU JH, ZHANG J, SHEN Y, QI QS, BAO XM, HOU J. Quorum sensing-mediated protein degradation for dynamic metabolic pathway control in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2021, 64: 85-94.
    [31] PENG BY, PLAN MR, CHRYSANTHOPOULOS P, HODSON MP, NIELSEN LK, VICKERS CE. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 39: 209-219.
    [32] HANSEN NL, MIETTINEN K, ZHAO Y, IGNEA C, ANDREADELLI A, RAADAM MH, MAKRIS AM, MØLLER BL, STÆRK D, BAK S, KAMPRANIS SC. Integrating pathway elucidation with yeast engineering to produce polpunonic acid the precursor of the anti-obesity agent celastrol[J]. Microbial Cell Factories, 2020, 19(1): 15.
    [33] 郭婷, 代易颖, 陈孔翔, 高莉, 张克亚, 曹志远, 王冠儒, 兰利琼, 卿人伟. 同源重组敲除三角褐指藻基因的研究[J]. 四川大学学报(自然科学版), 2017, 54(1): 173-177. GUO T, DAI YY, CHEN KX, GAO L, ZHANG KY, CAO ZY, WANG GR, LAN LQ, QING RW. The research of gene knockout via homologous recombination in Phaeodactylum tricornutum[J]. Journal of Sichuan University (Natural Science Edition), 2017, 54(1): 173-177 (in Chinese).
    [34] 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. YU K, XUE JQ, WANG JK, YU YT. Research progress on application of CRISPR/Cas9 gene editing technique in filamentous fungi[J]. Current Biotechnology, 2022, 12(5): 696-704 (in Chinese).
    [35] WANG XL, WU YJ, YEE JK. Detection of CRISPR/Cas9-generated off-target effect by integration-defective lentiviral vector[J]. Methods in Molecular Biology (Clifton, N J), 2020, 2162: 243-260.
    [36] ZHANG GC, KONG II, KIM H, LIU JJ, CATE JHD, JIN YS. Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease[J]. Applied and Environmental Microbiology, 2014, 80(24): 7694-7701.
    [37] MING DM, CHEN R, HUANG H. Amino-acid network clique analysis of protein mutation non-additive effects: a case study of lysozme[J]. International Journal of Molecular Sciences, 2018, 19(5): 1427.
    [38] MAZZEU BF, SOUZA-MOREIRA TM, OLIVEIRA AA, REMLINGER M, FELIPPE LG, VALENTINI SR, GUIDO RVC, ZANELLI CF, FURLAN M. The methionine 549 and leucine 552 residues of friedelin synthase from Maytenus ilicifolia are important for substrate binding specificity[J]. Molecules (Basel, Switzerland), 2021, 26(22): 6806.
    [39] SOUZA-MOREIRA TM, ALVES TB, PINHEIRO KA, FELIPPE LG, de LIMA GMA, WATANABE TF, BARBOSA CC, SANTOS VAFFM, LOPES NP, VALENTINI SR, GUIDO RVC, FURLAN M, ZANELLI CF. Friedelin synthase from Maytenus ilicifolia: leucine 482 plays an essential role in the production of the most rearranged pentacyclic triterpene[J]. Scientific Reports, 2016, 6: 36858.
    [40] HAMMER SK, AVALOS JL. Harnessing yeast organelles for metabolic engineering[J]. Nature Chemical Biology, 2017, 13(8): 823-832.
    [41] LIU GS, LI T, ZHOU W, JIANG M, TAO XY, LIU M, ZHAO M, REN YH, GAO B, WANG FQ, WEI DZ. The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering, 2020, 57: 151-161.
    [42] KIM JE, JANG IS, SON SH, KO YJ, CHO BK, KIM SC, LEE JY. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway[J]. Metabolic Engineering, 2019, 56: 50-59.
    [43] ARENDT P, MIETTINEN K, POLLIER J, de RYCKE R, CALLEWAERT N, GOOSSENS A. An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids[J]. Metabolic Engineering, 2017, 40: 165-175.
    [44] IGNEA C, TRIKKA FA, KOURTZELIS I, ARGIRIOU A, KANELLIS AK, KAMPRANIS SC, MAKRIS AM. Positive genetic interactors of HMG2 identify a new set of genetic perturbations for improving sesquiterpene production in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2012, 11: 162.
    [45] ZHU ZT, DU MM, GAO B, TAO XY, ZHAO M, REN YH, WANG FQ, WEI DZ. Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction[J]. Metabolic Engineering, 2021, 68: 232-245.
    [46] YU Y, RASOOL A, LIU HR, LÜ B, CHANG PC, SONG H, WANG Y, LI C. Engineering Saccharomyces cerevisiae for high yield production of α-amyrin via synergistic remodeling of α-amyrin synthase and expanding the storage pool[J]. Metabolic Engineering, 2020, 62: 72-83.
    [47] LI ZX, ZHANG JY, DUAN XL, ZHAO GA, ZHANG M. Celastrol: a promising agent fighting against cardiovascular diseases[J]. Antioxidants (Basel, Switzerland), 2022, 11(8): 1597.
    [48] ZHOU JW, HU TY, LIU Y, TU LC, SONG YD, LU Y, ZHANG YF, TONG YR, ZHAO YJ, SU P, WU XY, HUANG LQ, GAO W. Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol[J]. Phytochemistry, 2021, 190: 112868.
    [49] HENNEH IT, ARMAH FA, AMEYAW EO, BINEY RP, OBESE E, BOAKYE-GYASI E, ADAKUDUGU EA, EKOR M. Analgesic effect of Ziziphus abyssinica involves inhibition of inflammatory mediators and modulation of KATP channels, opioidergic and nitrergic pathways[J]. Frontiers in Pharmacology, 2021, 12: 714722.
    [50] LI P, SHEN SX, LIU LX, XU JH, MA XH, SHI DM, ZHANG ZQ. A new demethyl abietane diterpenoid from the roots of Tripterygium wilfordii[J]. Natural Product Research, 2020, 34(21): 3094-3100.
    [51] CHANG CW, WU TS, HSIEH YS, KUO SC, CHAO PD. Terpenoids of Syzygium formosanum[J]. Journal of Natural Products, 1999, 62(2): 327-328.
    [52] HUANG LL, LI J, YE HC, LI CF, WANG H, LIU BY, ZHANG YS. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus[J]. Planta, 2012, 236(5): 1571-1581.
    [53] FUKUSHIMA EO, SEKI H, OHYAMA K, ONO E, UMEMOTO N, MIZUTANI M, SAITO K, MURANAKA T. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis[J]. Plant & Cell Physiology, 2011, 52(12): 2050-2061.
    [54] WU JN, NIU YW, BAKUR A, LI H, CHEN QH. Cell-free production of pentacyclic triterpenoid compound betulinic acid from betulin by the engineered Saccharomyces cerevisiae[J]. Molecules (Basel, Switzerland), 2017, 22(7): 1075.
    [55] NG TB, LIU F, LU Y, CHENG CH, Wang Z. Antioxidant activity of compounds from the medicinal herb Aster tataricus[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2003, 136(2): 109-115.
    [56] 张慧颖, 付兴情, 蔡义玲, 李亶烨, 张建英, 左爱学. 大理卫矛乙醇提取物的化学成分研究[J]. 中国药房, 2018, 29(2): 176-179. ZHANG HY, FU XQ, CAI YL, LI DY, ZHANG JY, ZUO AX. Study on chemical constituents of ethanol extract from Euonymus amygdalifolius[J]. China Pharmacy, 2018, 29(2): 176-179 (in Chinese).
    [57] 杨春欣. 去甲泽拉木醛的研究及展望[J].中国中西医结合杂志. 2018, 38(3): 268-269. YANG CX. Research and prospects of demethylzelamide[J]. Chinese Journal of Integrated Traditional and Western Medicine, 2018, 38(3): 268-269 (in Chinese).
    [58] SUN XJ, SHEN BY, YU H, WU WH, SHENG RL, FANG YW, GUO RH. Therapeutic potential of demethylzeylasteral, a triterpenoid of the genus Tripterygium wilfordii[J]. Fitoterapia, 2022, 163: 105333.
    [59] YANG Y, KINOSHITA K, KOYAMA K, TAKAHASHI K, TAI T, NUNOURA Y, WATANABE K. Anti-emetic principles of Pogostemon cablin (blanco) Benth[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 1999, 6(2): 89-93.
    [60] LAN JE, LI XJ, ZHU XF, SUN ZL, HE JM, ZLOH M, GIBBONS S, MU Q. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus[J]. Natural Product Research, 2021, 35(11): 1881-1886.
    [61] RYU B, KIM HM, LEE JS, LEE CK, SEZIRAHIGA J, WOO JH, CHOI JH, JANG DS. New flavonol glucuronides from the flower buds of Syzygium aromaticum (clove)[J]. Journal of Agricultural and Food Chemistry, 2016, 64(15): 3048-3053.
    [62] CHEN JR, XIE XF, LI MT, XIONG QY, LI GM, ZHANG HQ, CHEN GR, XU X, YIN YP, PENG F, PENG C. Pharmacological activities and mechanisms of action of Pogostemon cablin Benth: a review[J]. Chinese Medicine, 2021, 16(1): 5.
    [63] MIETTINEN K, POLLIER J, BUYST D, ARENDT P, CSUK R, SOMMERWERK S, MOSES T, MERTENS J, SONAWANE PD, PAUWELS L, AHARONI A, MARTINS J, NELSON DR, GOOSSENS A. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis[J]. Nature Communications, 2017, 8: 14153.
    [64] YASUMOTO S, FUKUSHIMA EO, SEKI H, MURANAKA T. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes[J]. FEBS Letters, 2016, 590(4): 533-540.
    [65] WANG J, LI JX, LI JL, LIU SJ, WU XL, LI J, GAO WY. Transcriptome profiling shows gene regulation patterns in ginsenoside pathway in response to methyl jasmonate in Panax Quinquefolium adventitious root[J]. Scientific Reports, 2016, 6: 37263.
    [66] MOSES T, POLLIER J, FAIZAL A, APERS S, PIETERS L, THEVELEIN JM, GEELEN D, GOOSSENS A. Unraveling the triterpenoid saponin biosynthesis of the African shrub Maesa lanceolata[J]. Molecular Plant, 2015, 8(1): 122-135.
    [67] DALE MP, MOSES T, JOHNSTON EJ, ROSSER SJ. A systematic comparison of triterpenoid biosynthetic enzymes for the production of oleanolic acid in Saccharomyces cerevisiae[J]. PLoS One, 2020, 15(5): e0231980.
    [68] LI L, LIN SM, CHEN YY, WANG YQ, XIAO LH, YE XF, SUN L, ZHAN RT, XU H. Cytochrome P450 monooxygenase/cytochrome P450 reductase Bi-enzymatic system isolated from Ilex asprella for regio-specific oxidation of pentacyclic triterpenoids[J]. Frontiers in Plant Science, 2022, 13: 831401.
    [69] MOSES T, POLLIER J, ALMAGRO L, BUYST D, van MONTAGU M, PEDREÑO MA, MARTINS JC, THEVELEIN JM, GOOSSENS A. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1634-1639.
    [70] HAN JY, KIM MJ, BAN YW, HWANG HS, CHOI YE. The involvement of β-amyrin 28-oxidase (CYP716A52v2) in oleanane-type ginsenoside biosynthesis in Panax ginseng[J]. Plant & Cell Physiology, 2013, 54(12): 2034-2046.
    [71] FIALLOS-JURADO J, POLLIER J, MOSES T, ARENDT P, BARRIGA-MEDINA N, MORILLO E, ARAHANA V, de LOURDES TORRES M, GOOSSENS A, LEON-REYES A. Saponin determination, expression analysis and functional characterization of saponin biosynthetic genes in Chenopodium quinoa leaves[J]. Plant Science: an International Journal of Experimental Plant Biology, 2016, 250: 188-197.
    [72] MISRA RC, SHARMA S, SANDEEP, GARG A, CHANOTIYA CS, GHOSH S. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis[J]. New Phytologist, 2017, 214(2): 706-720.
    [73] YASUMOTO S, SEKI H, SHIMIZU Y, FUKUSHIMA EO, MURANAKA T. Functional characterization of CYP716 family P450 enzymes in triterpenoid biosynthesis in tomato[J]. Frontiers in Plant Science, 2017, 8: 21.
    [74] TAMURA K, SEKI H, SUZUKI H, KOJOMA M, SAITO K, MURANAKA T. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis[J]. Plant Cell Reports, 2017, 36(3): 437-445.
    [75] MOSES T, POLLIER J, SHEN Q, SOETAERT S, REED J, ERFFELINCK ML, van NIEUWERBURGH FCW, VANDEN BR, OSBOURN A, THEVELEIN JM, DEFORCE D, TANG KX, GOOSSENS A. OSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoids for the cuticle of aerial organs of Artemisia annua[J]. The Plant Cell, 2015, 27(1): 286-301.
    [76] 杨杰, 詹亚光, 肖佳雷, 尹静. 细胞色素P450在植物三萜和甾醇骨架修饰中的功能研究进展[J]. 中国科学: 生命科学, 2018, 48(10): 1065-1083. YANG J, ZHAN YG, XIAO JL, YIN J. Advances in the function of cytochrome P450 in structural modifications of triterpenoid and sterol skeletons in plants[J]. Scientia Sinica (Vitae), 2018, 48(10): 1065-1083 (in Chinese).
    [77] SEKI H, OHYAMA K, SAWAI S, MIZUTANI M, OHNISHI T, SUDO H, AKASHI T, AOKI T, SAITO K, MURANAKA T. Licorice beta-amyrin 11-oxidase, a cytochrome P450 with a key role in the biosynthesis of the triterpene sweetener glycyrrhizin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14204-14209.
    [78] ABELAK KK, BISHOP-BAILEY D, NOBELI I. Molecular dynamics simulations of the interaction of wild type and mutant human CYP2J2 with polyunsaturated fatty acids[J]. BMC Research Notes, 2019, 12(1): 760.
    [79] O’HANLON JA, REN XK, MORRIS M, WONG LL, ROBERTSON J. Hydroxylation of anilides by engineered cytochrome P450BM3[J]. Organic & Biomolecular Chemistry, 2017, 15(41): 8780-8787.
    [80] GOBER JG, RYDEEN AE, SCHWOCHERT TD, GIBSON-O’GRADY EJ, BRUSTAD EM. Enhancing cytochrome P450-mediated non-natural cyclopropanation by mutation of a conserved second-shell residue[J]. Biotechnology and Bioengineering, 2018, 115(6): 1416-1426.
    [81] BRACCO P, WIJMA HJ, NICOLAI B, ALEXANDER RODRIGUEZ BUITRAGO J, KLÜNEMANN T, VILA A, SCHREPFER P, BLANKENFELDT W, JANSSEN DB, SCHALLMEY A. CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering[J]. ChemBioChem, 2021, 22(6): 1099-1110.
    [82] 付加芳, 张晶, 张严洁, 杨纯, 曹广祥, 宗工理. 纳他霉素高产菌株Streptomyces gilvosporeus F607基因组及其生物合成基因簇分析[J]. 微生物学通报, 2019, 46(9): 2312-2325. FU JF, ZHANG J, ZHANG YJ, YANG C, CAO GX, ZONG GL. Analysis of genome sequence and natamycin biosynthetic gene cluster on high producing strain Streptomyces gilvosporeus F607[J]. Microbiology China, 2019, 46(9): 2312-2325 (in Chinese).
    [83] HASHIMOTO T, KOZONE I, HASHIMOTO J, SUENAGA H, FUJIE M, SATOH N, IKEDA H, SHIN-YA K. Identification, cloning and heterologous expression of biosynthetic gene cluster for desertomycin[J]. The Journal of Antibiotics, 2020, 73(9): 650-654.
    [84] SHUAI H, MYRONOVSKYI M, NADMID S, LUZHETSKYY A. Identification of a biosynthetic gene cluster responsible for the production of a new pyrrolopyrimidine natural product-huimycin[J]. Biomolecules, 2020, 10(7): 1074.
    [85] MASSIMO F, ANTONIA G, CARLA C, LUCIA G, MICHELE S, BAKER SCOTT E, GIANCARLO P. Evidence of the involvement of a cyclase gene in the biosynthesis of ochratoxin A in Aspergillus carbonarius[J]. Toxins, 2021, 13(12): 892.
    [86] ZHAO L, WANG DJ, LIU J, YU XF, WANG RY, WEI Y, WEN CW, OU YANG Z. Transcriptomic analysis of key genes involved in chlorogenic acid biosynthetic pathway and characterization of MaHCT from Morus alba L.[J]. Protein Expression and Purification, 2019, 156: 25-35.
    [87] 吕海舟, 刘琬菁, 何柳, 徐志超, 罗红梅. 植物次生代谢基因簇研究进展[J].植物科学学报, 2017, 35(4): 609-610, 612. LÜ HZ, LIU WJ, HE L, XU ZC, LUO HM. Advances on the study of gene clusters involved in plant secondary metabolism[J]. Plant Science Journal, 2017, 35(4): 609-610, 612 (in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Kaiyue, ZOU Xu, ZHANG Chenshuo, WANG Yang, YU Yuan. Research status and prospect of the synthesis of friedelin and its derivatives by Saccharomyces cerevisiae[J]. Microbiology China, 2023, 50(9): 4220-4236

Copy
Share
Article Metrics
  • Abstract:208
  • PDF: 822
  • HTML: 743
  • Cited by: 0
History
  • Received:November 25,2022
  • Adopted:March 21,2023
  • Online: September 04,2023
  • Published: September 20,2023
Article QR Code