Research progress in the relationship between gut microbiota-derived extracellular vesicles and liver diseases
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [87]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Extracellular vesicles (EVs) are a type of lipid bilayer membrane vesicles, which can be secreted by a variety of cells. EVs as the key players of interkingdom crosstalk participate in the transmission of signals between prokaryotes and eukaryotes to regulate biological processes. In gut ecosystems, microbe-host communication usually does not involve direct cell contact. Microbiome-derived and host-derived EVs are key participants in such interkingdom crosstalk. The gut-liver axis plays a bridging role in the interaction between gut microbiota and the liver, that can modulate liver diseases including alcoholic fatty liver disease. Recent studies have demonstrated that gut microbiota-derived EVs play a key role in liver diseases. This article summarizes the research progress in gut microbiota-derived EVs, especially the mechanism of EVs production, the contents of EVs, bacteria-host interaction and its role in liver diseases.

    Reference
    [1] KALLURI R, LeBLEU VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
    [2] MCMILLAN HM, KUEHN MJ. The extracellular vesicle generation paradox: a bacterial point of view[J]. The EMBO Journal, 2021, 40(21): e108174.
    [3] van NIEL G, D’ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228.
    [4] PAN BT, JOHNSTONE RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
    [5] ZHANG L, YU DH. Exosomes in cancer development, metastasis, and immunity[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2019, 1871(2): 455-468.
    [6] HOEKSTRA D, van der LAAN JW, de LEIJ L, WITHOLT B. Release of outer membrane fragments from normally growing Escherichia coli[J]. Biochimica et Biophysica Acta, 1976, 455(3): 889-899.
    [7] SARTORIO MG, PARDUE EJ, FELDMAN MF, HAURAT MF. Bacterial outer membrane vesicles: from discovery to applications[J]. Annual Review of Microbiology, 2021, 75: 609-630.
    [8] TOYOFUKU M, NOMURA N, EBERL L. Types and origins of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2019, 17(1): 13-24.
    [9] 孟玲宁, 曹小利, 张燕, 周万青, 沈瀚. 真菌细胞外囊泡的研究进展[J]. 中国真菌学杂志, 2022, 17(4): 349-352. MENG LN, CAO XL, ZHANG Y, ZHOU WQ, SHEN H. Research progress of extracellular vesicles of fungi[J]. Chinese Journal of Mycology, 2022, 17(4): 349-352 (in Chinese).
    [10] GARCIA-CERON D, BLEACKLEY MR, ANDERSON MA. Fungal extracellular vesicles in pathophysiology[M]//Subcellular Biochemistry. Cham: Springer International Publishing, 2021: 151-177.
    [11] PROCTOR LM, CREASY HH, FETTWEIS JM, LLOYD-PRICE J, MAHURKAR A, ZHOU WY, BUCK GA, SNYDE MP, STRAUSS JF, WEINSTOCK GM, WHITE O, HUTTENHOWER C. The integrative human microbiome project[J]. Nature, 2019, 569(7758): 641-648.
    [12] de VOS WM, TILG H, van HUL M, CANI PD. Gut microbiome and health: mechanistic insights[J]. Gut, 2022, 71(5): 1020-1032.
    [13] URSELL LK, HAISER HJ, van TREUREN W, GARG N, REDDIVARI L, VANAMALA J, DORRESTEIN PC, TURNBAUGH PJ, KNIGHT R. The intestinal metabolome: an intersection between microbiota and host[J]. Gastroenterology, 2014, 146(6): 1470-1476.
    [14] MA XY, SHIN YJ, YOO JW, PARK HS, KIM DH. Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment[J]. Journal of Advanced Research, 2023. DIO: 10.1016/j.jare.2023.02.006.
    [15] ZHANG ZW, LIU XH, YANG XQ, JIANG Y, LI A, CONG JY, LI YW, XIE QJ, XU C, LIU DB. Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer[J]. Journal of Extracellular Vesicles, 2023, 12(1): 12300.
    [16] QIAN MY, LIU J, ZHAO DY, PAN CY, JIA WX, GAO YS, ZHANG YF, YANG S, ZHANG N, ZHANG YN, ZHANG Q, WU DL, SCHNABL B, SHEN X, WANG LR. 715 aryl hydrocarbon receptor deficiency in intestinal epithelial cells aggravates alcohol-related liver disease[J]. Gastroenterology, 2021, 160(6): S-794.
    [17] LI Y, ZHAO DY, QIAN MY, LIU J, PAN CY, ZHANG XX, DUAN XB, ZHANG YF, JIA WX, WANG LR. Amlodipine, an anti-hypertensive drug, alleviates non-alcoholic fatty liver disease by modulating gut microbiota[J]. British Journal of Pharmacology, 2022, 179(9): 2054-2077.
    [18] WANG L, FOUTS DE, STÄRKEL P, HARTMANN P, CHEN P, LLORENTE C, DEPEW J, MONCERA K, HO SB, BRENNER DA, HOOPER LV, SCHNABL B. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation[J]. Cell Host and Microbe, 2016, 19(2): 227-239.
    [19] NAKAO Y, AMROLLAHI P, PARTHASARATHY G, MAUER AS, SEHRAWAT TS, VANDERBOOM P, NAIR KS, NAKAO K, ALLEN AM, HU TY, MALHI H. Circulating extracellular vesicles are a biomarker for NAFLD resolution and response to weight loss surgery[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2021, 36: 102430.
    [20] WU DQ, ZHU HQ, WANG H. Extracellular vesicles in non-alcoholic fatty liver disease and alcoholic liver disease[J]. Frontiers in Physiology, 2021, 12: 707429.
    [21] 汤胜兰, 谢正元. 外泌体在肝纤维化中的作用[J]. 生命的化学, 2020, 40(2): 230-235. TANG SL, XIE ZY. The role of exosomes in liver fibrosis[J]. Chemistry of Life, 2020, 40(2): 230-235 (in Chinese).
    [22] 方程远, 魏云巍. 细胞外囊泡在肝脏疾病中的研究现状[J]. 医学综述, 2017, 23(16): 3142-3145. FANG CY, WEI YW. Extracellular vesicles in liver pathobiology[J]. Medical Recapitulate, 2017, 23(16): 3142-3145 (in Chinese).
    [23] THAKUR A, KE XS, CHEN YW, MOTALLEBNEJAD P, ZHANG K, LIAN QZ, CHEN HJ. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics[J]. Protein and Cell, 2022, 13(9): 631-654.
    [24] JEPPESEN DK, FENIX AM, FRANKLIN JL, HIGGINBOTHAM JN, ZHANG Q, ZIMMERMAN LJ, LIEBLER DC, PING J, LIU Q, EVANS R, FISSELL WH, PATTON JG, ROME LH, BURNETTE DT, COFFEY RJ. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445. e18.
    [25] DIXSON AC, DAWSON TR, di VIZIO D, WEAVER AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection[J]. Nature Reviews Molecular Cell Biology, 2023, 24(7): 454-476.
    [26] SCHWECHHEIMER C, SULLIVAN CJ, KUEHN MJ. Envelope control of outer membrane vesicle production in gram-negative bacteria[J]. Biochemistry, 2013, 52(18): 3031-3040.
    [27] SANTOS JC, DICK MS, LAGRANGE B, DEGRANDI D, PFEFFER K, YAMAMOTO M, MEUNIER E, PELCZAR P, HENRY T, BROZ P. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation[J]. The EMBO Journal, 2018, 37(6): e98089.
    [28] DEATHERAGE BL, LARA JC, BERGSBAKEN T, RASSOULIAN BARRETT SL, LARA S, COOKSON BT. Biogenesis of bacterial membrane vesicles[J]. Molecular Microbiology, 2009, 72(6): 1395-1407.
    [29] WENSINK J, WITHOLT B. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein[J]. European Journal of Biochemistry, 1981, 116(2): 331-335.
    [30] SCHWECHHEIMER C, KULP A, KUEHN MJ. Modulation of bacterial outer membrane vesicle production by envelope structure and content[J]. BMC Microbiology, 2014, 14: 324.
    [31] JIANG YL, KONG QK, ROLAND KL, Curtiss R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity[J]. International Journal of Medical Microbiology, 2014, 304(3/4): 431-443.
    [32] MASHBURN LM, WHITELEY M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote[J]. Nature, 2005, 437(7057): 422-425.
    [33] MASHBURN-WARREN L, HOWE J, BRANDENBURG K, WHITELEY M. Structural requirements of the Pseudomonas quinolone signal for membrane vesicle stimulation[J]. Journal of Bacteriology, 2009, 191(10): 3411-3414.
    [34] MCBROOM AJ, JOHNSON AP, VEMULAPALLI S, KUEHN MJ. Outer membrane vesicle production by Escherichia coli is independent of membrane instability[J]. Journal of Bacteriology, 2006, 188(15): 5385-5392.
    [35] MCBROOM AJ, KUEHN MJ. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response[J]. Molecular Microbiology, 2007, 63(2): 545-558.
    [36] SCHERTZER JW, WHITELEY M. A bilayer-couple model of bacterial outer membrane vesicle biogenesis[J]. mBio, 2012, 3(2): e00297-11.
    [37] SCHWECHHEIMER C, KUEHN MJ. Outer-membrane vesicles from gram-negative bacteria: biogenesis and functions[J]. Nature Reviews Microbiology, 2015, 13(10): 605-619.
    [38] LEE EY, CHOI DY, KIM DK, KIM JW, PARK JO, KIM S, KIM SH, DESIDERIO DM, KIM YK, KIM KP, GHO YS. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles[J]. Proteomics, 2009, 9(24): 5425-5436.
    [39] van BALKOM BW, EISELE AS, PEGTEL DM, BERVOETS S, VERHAAR MC. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting[J]. Journal of Extracellular Vesicles, 2015, 4: 26760.
    [40] KEERTHIKUMAR S, CHISANGA D, ARIYARATNE D, AL SAFFAR H, ANAND S, ZHAO KN, SAMUEL M, PATHAN M, JOIS M, CHILAMKURTI N, GANGODA L, MATHIVANAN S. ExoCarta: a web-based compendium of exosomal cargo[J]. Journal of Molecular Biology, 2016, 428(4): 688-692.
    [41] PATHAN M, FONSEKA P, CHITTI SV, KANG T, SANWLANI R, van DEUN J, HENDRIX A, MATHIVANAN S. Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles[J]. Nucleic Acids Research, 2019, 47(D1): D516-D519.
    [42] ZHANG RR, HU YY, YUAN JY, WU DZ. Effects of Puerariae radix extract on the increasing intestinal permeability in rat with alcohol-induced liver injury[J]. Journal of Ethnopharmacology, 2009, 126(2): 207-214.
    [43] KUEHN MJ, KESTY NC. Bacterial outer membrane vesicles and the host-pathogen interaction[J]. Genes & Development, 2005, 19(22): 2645-2655.
    [44] BEVERIDGE TJ. Structures of gram-negative cell walls and their derived membrane vesicles[J]. Journal of Bacteriology, 1999, 181(16): 4725-4733.
    [45] PETTIT RK, JUDD RC. Characterization of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae[J]. Molecular Microbiology, 1992, 6(6): 723-728.
    [46] GRENIER D, MAYRAND D. Functional characterization of extracellular vesicles produced by Bacteroides gingivalis[J]. Infection and Immunity, 1987, 55(1): 111-117.
    [47] KATO S, KOWASHI Y, DEMUTH DR. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin[J]. Microbial Pathogenesis, 2002, 32(1): 1-13.
    [48] HORSTMAN AL, KUEHN MJ. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles[J]. The Journal of Biological Chemistry, 2000, 275(17): 12489-12496.
    [49] ALTINDIS E, FU Y, MEKALANOS JJ. Proteomic analysis of Vibrio cholerae outer membrane vesicles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): E1548-E1556.
    [50] CHOI DS, KIM DK, CHOI SJ, LEE J, CHOI JP, RHO S, PARK SH, KIM YK, HWANG D, GHO YS. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa[J]. Proteomics, 2011, 11(16): 3424-3429.
    [51] RIVERA J, CORDERO RJB, NAKOUZI AS, FRASES S, NICOLA A, CASADEVALL A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44): 19002-19007.
    [52] OLAYA-ABRIL A, PRADOS-ROSALES R, MCCONNELL MJ, MARTÍN-PEÑA R, GONZÁLEZ- REYES JA, JIMÉNEZ-MUNGUÍA I, GÓMEZ- GASCÓN L, FERNÁNDEZ J, LUQUE-GARCÍA JL, GARCÍA-LIDÓN C, ESTÉVEZ H, PACHÓN J, OBANDO I, CASADEVALL A, PIROFSKI LA, RODRÍGUEZ-ORTEGA MJ. Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae[J]. Journal of Proteomics, 2014, 106: 46-60.
    [53] LARIOS J, MERCIER V, ROUX A, GRUENBERG J. ALIX- and ESCRT-Ⅲ-dependent sorting of tetraspanins to exosomes[J]. Journal of Cell Biology, 2020, 219(3): e201904113.
    [54] CHEN YD, FANG YT, CHENG YL, LIN CF, HSU LJ, WANG SY, ANDERSON R, CHANG CP, LIN YS. Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells[J]. Scientific Reports, 2017, 7: 5676.
    [55] JIANG LL, SHEN YY, GUO DF, YANG DY, LIU JJ, FEI XF, YANG YS, ZHANG BY, LIN ZD, YANG F, WANG XJ, WANG KY, WANG JL, CAI ZJ. EpCAM-dependent extracellular vesicles from intestinal epithelial cells maintain intestinal tract immune balance[J]. Nature Communications, 2016, 7: 13045.
    [56] BÜNING J, von SMOLINSKI D, TAFAZZOLI K, ZIMMER KP, STROBEL S, APOSTOLAKI M, KOLLIAS G, HEATH JK, LUDWIG D, GEBERT A. Multivesicular bodies in intestinal epithelial cells: responsible for MHC class Ⅱ-restricted antigen processing and origin of exosomes[J]. Immunology, 2008, 125(4): 510-521.
    [57] BENINSON LA, FLESHNER M. Exosomes: an emerging factor in stress-induced immunomodulation[J]. Seminars in Immunology, 2014, 26(5): 394-401.
    [58] el ANDALOUSSI S, MÄGER I, BREAKEFIELD XO, WOOD MJA. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nature Reviews Drug Discovery, 2013, 12(5): 347-357.
    [59] BRIAUD P, CARROLL RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria[J]. Infection and Immunity, 2020, 88(12): e00433-20.
    [60] TOYOFUKU M, SCHILD S, KAPARAKIS-LIASKOS M, EBERL L. Composition and functions of bacterial membrane vesicles[J]. Nature Reviews Microbiology, 2023, 21(7): 415-430.
    [61] CHAMPAGNE-JORGENSEN K, MIAN MF, MCVEY NEUFELD KA, STANISZ AM, BIENENSTOCK J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells[J]. Scientific Reports, 2021, 11: 13756.
    [62] BIAGINI M, GARIBALDI M, APREA S, PEZZICOLI A, DORO F, BECHERELLI M, TADDEI AR, TANI C, TAVARINI S, MORA M, TETI G, D’ORO U, NUTI S, SORIANI M, MARGARIT I, RAPPUOLI R, GRANDI G, NORAIS N. The human pathogen Streptococcus pyogenes releases lipoproteins as lipoprotein-rich membrane vesicles[J]. Molecular & Cellular Proteomics: MCP, 2015, 14(8): 2138-2149.
    [63] LEE AR, BIN PARK S, KIM SW, JUNG JW, CHUN JH, KIM J, KIM YR, LAZARTE JMS, BIN JANG H, THOMPSON KD, JUNG M, HA MW, JUNG TS. Membrane vesicles from antibiotic-resistant Staphylococcus aureus transfer antibiotic-resistance to antibiotic-susceptible Escherichia coli[J]. Journal of Applied Microbiology, 2022, 132(4): 2746-2759.
    [64] JERMY A. eDNA limits biofilm attachment[J]. Nature Reviews Microbiology, 2010, 8(9): 612-613.
    [65] OKSHEVSKY M, REGINA VR, MEYER RL. Extracellular DNA as a target for biofilm control[J]. Current Opinion in Biotechnology, 2015, 33: 73-80.
    [66] SAHU PK, IYER PS, OAK AM, PARDESI KR, CHOPADE BA. Characterization of eDNA from the clinical StrainAcinetobacter baumanniiAIIMS 7 and its role in biofilm formation[J]. The Scientific World Journal, 2012, 2012: 1-10.
    [67] JONES EJ, BOOTH C, FONSECA S, PARKER A, CROSS K, MIQUEL-CLOPÉS A, HAUTEFORT I, MAYER U, WILEMAN T, STENTZ R, CARDING SR. The uptake, trafficking, and biodistribution of Bacteroides thetaiotaomicron generated outer membrane vesicles[J]. Frontiers in Microbiology, 2020, 11: 57.
    [68] KIM JH, YOON YJ, LEE J, CHOI EJ, YI N, PARK KS, PARK J, LÖTVALL J, KIM YK, GHO YS. Outer membrane vesicles derived from Escherichia coli up-regulate expression of endothelial cell adhesion molecules in vitro and in vivo[J]. PLoS One, 2013, 8(3): e59276.
    [69] SHAH B, SULLIVAN CJ, LONERGAN NE, STANLEY S, SOULT MC, BRITT LD. Circulating bacterial membrane vesicles cause Sepsis in rats[J]. Shock, 2012, 37(6): 621-628.
    [70] ZHOU BL, YUAN YT, ZHANG SS, GUO C, LI XL, LI GY, XIONG W, ZENG ZY. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Frontiers in Immunology, 2020, 11: 575.
    [71] DÍAZ-GARRIDO N, BADIA J, BALDOMÀ L. Microbiota-derived extracellular vesicles in interKingdom communication in the gut[J]. Journal of Extracellular Vesicles, 2021, 10(13): e12161.
    [72] IRVING T, MIMURO H, KUFER T, LO C, WHEELER R, TURNER LJ, THOMAS BJ, MALOSSE C, GANTIER MP, CASILLAS LN, VOTTA BJ, BERTIN J, BONECA IG, SASAKAWA C, PHILPOTT DJ, FERRERO RL, KAPARAKIS-LIASKOS M. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling[J]. Cell Host and Microbe, 2014, 15(5): 623-635.
    [73] BITTEL M, REICHERT P, SARFATI I, DRESSEL A, LEIKAM S, UDERHARDT S, STOLZER I, PHU TA, NG M, VU NK, TENZER S, DISTLER U, WIRTZ S, ROTHHAMMER V, NEURATH MF, RAFFAI RL, GÜNTHER C, MOMMA S. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo[J]. Journal of Extracellular Vesicles, 2021, 10(12): e12159.
    [74] KANG M, JORDAN V, BLENKIRON C, CHAMLEY LW. Biodistribution of extracellular vesicles following administration into animals: a systematic review[J]. Journal of Extracellular Vesicles, 2021, 10(8): e12085.
    [75] FIZANNE L, VILLARD A, BENABBOU N, RECOQUILLON S, SOLETI R, DELAGE E, WERTHEIMER M, VIDAL-GÓMEZ X, OULLIER T, CHAFFRON S, MARTÍNEZ MC, NEUNLIST M, BOURSIER J, ANDRIANTSITOHAINA R. Faeces-derived extracellular vesicles participate in the onset of barrier dysfunction leading to liver diseases[J]. Journal of Extracellular Vesicles, 2023, 12(2): 12303.
    [76] KUMAR A, SUNDARAM K, MU JY, DRYDEN GW, SRIWASTVA MK, LEI C, ZHANG LF, QIU XL, XU FY, YAN J, ZHANG X, PARK JW, MERCHANT ML, BOHLER HCL, WANG BM, ZHANG SQ, QIN C, XU ZY, HAN XL, MCCLAIN CJ, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance[J]. Nature Communications, 2021, 12: 213.
    [77] LUO Z, JI Y, GAO H, REIS FCGD, BANDYOPADHYAY G, JIN Z, LY C, CHANG Y, ZHANG D, KUMAR D, YING W. CRIg+ macrophages prevent gut microbial DNA-containing extracellular vesicle-induced tissue inflammation and insulin resistance[J]. Gastroenterology, 2021, 160(3): 863-874.
    [78] LUO ZL, JI YD, ZHANG DH, GAO H, JIN ZM, YANG MX, YING W. Microbial DNA enrichment promotes liver steatosis and fibrosis in the course of non-alcoholic steatohepatitis[J]. Acta Physiologica, 2022, 235(3): e13827.
    [79] ZAHMATKESH ME, JAHANBAKHSH M, HOSEINI N, SHEGEFTI S, PEYMANI A, DABIN H, SAMIMI R, BOLORI S. Effects of exosomes derived from Helicobacter pylori outer membrane vesicle-infected hepatocytes on hepatic stellate cell activation and liver fibrosis induction[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 857570.
    [80] KESHAVARZ AZIZI RAFTAR S, ASHRAFIAN F, YADEGAR A, LARI A, MORADI HR, SHAHRIARY A, AZIMIRAD M, ALAVIFARD H, MOHSENIFAR Z, DAVARI M, VAZIRI F, MOSHIRI A, DAVAR SIADAT S, ZALI MR. The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury[J]. Microbiology Spectrum, 2021, 9(2): e00484-21.
    [81] TULKENS J, VERGAUWEN G, van DEUN J, GEEURICKX E, DHONDT B, LIPPENS L, de SCHEERDER MA, MIINALAINEN I, RAPPU P, de GEEST BG, VANDECASTEELE K, LAUKENS D, VANDEKERCKHOVE L, DENYS H, VANDESOMPELE J, de WEVER O, HENDRIX A. Increased levels of systemic LPS-positive bacterial extracellular vesicles in patients with intestinal barrier dysfunction[J]. Gut, 2020, 69(1): 191-193.
    [82] KIM SI, KANG N, LEEM S, YANG J, JO H, LEE M, KIM HS, DHANASEKARAN DN, KIM YK, PARK T, SONG yong sang. Metagenomic analysis of serum microbe-derived extracellular vesicles and diagnostic models to differentiate ovarian cancer and benign ovarian tumor[J]. Cancers, 2020, 12(5): 1309.
    [83] WEI SC, WEI W, PENG WJ, LIU Z, CAI ZY, ZHAO B. Metabolic alterations in the outer membrane vesicles of patients with alzheimer’s disease: an LC-MS/MS-based metabolomics analysis[J]. Current Alzheimer Research, 2020, 16(13): 1183-1195.
    [84] LEE YS, KIM JH, LIM DH. Urine microbe-derived extracellular vesicles in children with asthma[J]. Allergy, Asthma & Immunology Research, 2021, 13(1): 75.
    [85] SAMRA MS, LIM DH, HAN man yong, JEE HM, KIM YK, KIM JH. Bacterial microbiota-derived extracellular vesicles in children with allergic airway diseases: compositional and functional features[J]. Allergy, Asthma & Immunology Research, 2021, 13(1): 56.
    [86] QIN B, ZHANG Q, HU XM, MI TY, YU HY, LIU SS, ZHANG B, TANG M, HUANG JF, XIONG K. How does temperature play a role in the storage of extracellular vesicles?[J]. Journal of Cellular Physiology, 2020, 235(11): 7663-7680.
    [87] THIETART S, RAUTOU PE. Extracellular vesicles as biomarkers in liver diseases: a clinician’s point of view[J]. Journal of Hepatology, 2020, 73(6): 1507-1525.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JIA Wenxin, WANG Lirui. Research progress in the relationship between gut microbiota-derived extracellular vesicles and liver diseases[J]. Microbiology China, 2023, 50(9): 4206-4219

Copy
Share
Article Metrics
  • Abstract:227
  • PDF: 880
  • HTML: 1007
  • Cited by: 0
History
  • Received:March 31,2023
  • Adopted:May 22,2023
  • Online: September 04,2023
  • Published: September 20,2023
Article QR Code