Screening of Trichoderma strains for maize straw degradation at low temperature
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Species of Trichoderma are common cellulose and hemicellulose- degrading fungi in nature and play an important role in the degradation of agricultural wastes.[Objective] To screen out Trichoderma strains that can degrade maize straw under low temperature. [Methods] This study determined the growth rates and the diameter of hydrolytic transparent circle produced by cellulase and xylanase of 111 strains belonging to 31 Trichoderma species under low temperature, as well as the relative degradation rate (RDR) of the representative strains on maize straw. The cellulose filter paper enzyme (FPase), carboxymethyl cellulase (CMCase), and xylanase activities of the representative strains with different RDR values were determined by the DNS method, and the relationship between their enzyme activities and RDR in different fermentation stages were further analyzed. [Results] All the tested strains were able to grow at 15 ℃, whereas, 100 and 42 out of them could grow at 10 ℃ and 5 ℃, respectively. Among them, 19 strains produced hydrolytic both cellulose and xylan transparent circles with diameters more than 60 mm after 6 days, and their RDRs on maize straw after 10 days were 0.45%-8.09%. The activities of FPase, CMCase, and xylanase of the strains 9145, TC425, TC505, and 8987 showed a dynamic change with the cultivation time, of which the tendency of FPase and CMCase was basically identical and closely related to the RDR. [Conclusion] The strains of T. atrobrunneum, T. atroviride, T. hamatum, and T. simmonsii show high degradation rates of maize straw at low temperatures, which will provide germplasm resources for subsequent development of ripening agent, degradation mechanism research, and resource utilization of maize straw.

    Reference
    [1] 于浩. 保护好“耕地中的大熊猫”: 黑土地保护法诞生记[J]. 中国人大, 2022(13): 20-22. YU H. Protect the ‘giant panda in cultivated land’—the birth of the black land protection law[J]. The People’s Congress of China, 2022(13): 20-22 (in Chinese).
    [2] 魏孔明. 改善耕地资源利用与保护“南北失衡”状况研究[J].黑龙江粮食, 2022(6): 10-12. WEI KM. Study on improving the ‘north-south imbalance’ in the utilization and protection of cultivated land resources[J]. Heilongjiang Grain, 2022(6): 10-12 (in Chinese).
    [3] 王天一, 黄善林, 李冬梅. 资源禀赋对农户黑土地保护行为的影响研究[J/OL]. 中国农业资源与区划, 2022. https://kns.cnki.net/kcms/detail/11.3513.S.20220920.1023.002.html. WANG TY, HUANG SL, LI DM. Research on the influence of resource endowment on farmers’ black land protection behavior[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning, 2022. https://kns.cnki.net/kcms/detail/11.3513.S.20220920.1023.002.html (in Chinese).
    [4] 谢淑娟, 匡耀求, 黄宁生. 中国发展碳汇农业的主要路径与政策建议[J]. 中国人口·资源与环境, 2010, 20(12): 46-51. XIE SJ, KUANG YQ, HUANG NS. Main paths and policy proposals for the development of carbon-sinking agriculture in China[J]. China Population, Resources and Environment, 2010, 20(12): 46-51 (in Chinese).
    [5] 霍丽丽, 姚宗路, 赵立欣, 罗娟, 张沛祯. 秸秆综合利用减排固碳贡献与潜力研究[J]. 农业机械学报, 2022, 53(1): 349-359. HUO LL, YAO ZL, ZHAO LX, LUO J, ZHANG PZ. Contribution and potential of comprehensive utilization of straw in GHG emission reduction and carbon sequestration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 349-359 (in Chinese).
    [6] Zabed HM, Akter S, YUN JH, ZHANG GY, AWAD FN, QI XH, SAHU JN. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 105-128.
    [7] Kumari D, Singh R. Pretreatment of lignocellulosic wastes for biofuel production: a critical review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 877-891.
    [8] 张新杰, 周兴瑞, 孙慧颖, 孟亚南, 曾凡力. 拮抗植物病原真菌的纤维素/木质素降解菌株的筛选及鉴定[J]. 微生物学通报, 2023, 50(1): 251-261. ZHANG XJ, ZHOU XR, SUN HY, MENG YN, ZENG FL. Screening and identification of cellulose/lignin- degrading strains against plant pathogenic fungi[J]. Microbiology China, 2023, 50(1): 251-261 (in Chinese).
    [9] BEHERA BC, SETHI BK, MISHRA RR, DUTTA SK, THATOI HN. Microbial cellulases-diversity & biotechnology with reference to mangrove environment: a review[J]. Journal of Genetic Engineering and Biotechnology, 2017, 15(1): 197-210.
    [10] Awasthi MK, Pandey AK, Khan J, Bundela PS, Wong JWC, Selvam A. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting[J]. Bioresource Technology, 2014, 168: 214-221.
    [11] CUEVAS VC, SAMULDE SN, PAJARO PG. Trichoderma harzianum Rifai as activator for rapid composting of agricultural wastes[J]. The Philippine Agriculturist, 1988, 71: 461-469.
    [12] CHANG J, YIN QQ, REN TB, SONG AD, ZUO RY, GUO HW. Effect of steam explosion pretreatment and microbial fermentation on degradation of corn straw[J]. Advanced Materials Research, 2011, 343-344: 809-814.
    [13] WANG RX, TAO DX, LI J, CHEN SN, FAN JX, BI WS, BOBOUA SYB, ZHENG GX. Screening and characterization of a low-temperature-resistant cellulose-degrading strain, Trichoderma harzianum L-8, from a primitive forest[J]. BioResources, 2022, 17(2): 3303-3319.
    [14] 张晨敏. 低温纤维素降解菌的筛选及复合菌剂在秸秆还田中的应用[D]. 南京: 南京农业大学硕士学位论文, 2014. ZHANG CM. Screening of bacteria decomposing low-temperature cellulose and the application of composite microbial inoculants in straw returning to field[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2014 (in Chinese).
    [15] 赵欣. 耐低温稻秆降解复合菌系的培养基组分优化及产酶分析[D]. 哈尔滨: 东北农业大学硕士学位论文, 2017. ZHAO X. Medium component optimization and enzyme composition analysis of a straw-decomposing microbial system with low-temperature tolerance capacity[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2017 (in Chinese).
    [16] 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. FENG XX, LI FL, XU YQ, LI L, HE FM, FENG YZ, YUAN Q, LIU D. Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1468-1476 (in Chinese).
    [17] TEATHER RM, WOOD PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen[J]. Applied and Environmental Microbiology, 1982, 43(4): 777-780.
    [18] 曹慧, 张会会, 张腾月, 苏奎源, 张镯, 刘真, 杨迪, 刘紫祎. 产低温纤维素酶和木聚糖酶真菌的筛选鉴定及酶学性质[J]. 饲料研究, 2022, 45(3): 85-88. CAO H, ZHANG HH, ZHANG TY, SU KY, ZHANG Z, LIU Z, YANG D, LIU ZY. Screening and enzymatic properties of cold-adapted cellulose-xylanase degradation fungus[J]. Feed Research, 2022, 45(3): 85-88 (in Chinese).
    [19] Jiang GF, Chen PJ, Bao YZ, Wang XF, Yang TJ, Mei XL, Banerjee S, Wei Z, Xu YC, Shen QR. Isolation of a novel psychrotrophic fungus for efficient low-temperature composting[J]. Bioresource Technology, 2021, 331: 125049.
    [20] GHOSE TK. Measurement of cellulase activities[J]. Pure and Applied Chemistry, 1987, 59(2): 257-268.
    [21] 孙佑海. 为黑土地保护提供有力法律保障: 《黑土地保护法》解读[J]. 环境保护, 2022, 50(16): 39-44. SUN YH. Provide strong legal protection for black land protection—interpretation of black land protection law[J]. Environmental Protection, 2022, 50(16): 39-44 (in Chinese).
    [22] 宋显伟, 张保才, 白洋, 潘多峰, 邓向东, 王竑晟, 孙波, 曹晓风. 生物技术助力黑土地保护性利用的应用与思考[J]. 中国科学院院刊, 2021, 36(12): 1488-1496. SONG XW, ZHANG BC, BAI Y, PAN DF, DENG XD, WANG HS, SUN B, CAO XF. Application and review of biotechnology in promoting protective utilization of black soil[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(12): 1488-1496 (in Chinese).
    [23] WANG JJ, ZHU D, ZHAO SQ, XU S, YANG R, ZHAO W, ZHANG XX, HUANG ZY. Effect of liquid volume and microflora source on degradation rate and microbial community in corn stover degradation[J]. AMB Express, 2021, 11(1): 80.
    [24] 梅新兰, 郑海平, 李水仙, 杨天杰, 江高飞, 韦中, 徐阳春, 沈其荣. 降解水稻秸秆细菌-真菌复合菌系的构建与评价[J]. 农业环境科学学报, 2021, 40(10): 2217-2225. MEI XL, ZHENG HP, LI SX, YANG TJ, JIANG GF, WEI Z, XU YC, SHEN QR. Construction and evaluation of bacterial-fungal consortia for rice straw degradation[J]. Journal of Agro-Environment Science, 2021, 40(10): 2217-2225 (in Chinese).
    [25] ORGANO ND, GRANADA SMJM, PINEDA HGS, SANDRO JM, NGUYEN VH, GUMMERT M. Assessing the potential of a Trichoderma-based compost activator to hasten the decomposition of incorporated rice straw[J]. Scientific Reports, 2022, 12(1): 448.
    [26] LÜ JL. Optimal conditions for maximizing production of reducing sugars from microwave-assisted FeCl3 pretreated rice straw degraded by Trichoderma viride and Bacillus pumilus[J]. African Journal of Microbiology Research, 2011, 5(31): 5757-5764.
    [27] Ogaki MB, Teixeira DR, Vieira R, Lírio JM, Felizardo JPS, Abuchacra RC, Cardoso RP, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JQ, Ceravolo IP, Pereira PO, Rosa CA, Rosa LH. Diversity and bioprospecting of cultivable fungal assemblages in sediments of lakes in the Antarctic Peninsula[J]. Fungal Biology, 2020, 124(6): 601-611.
    [28] ALFANO G, IVEY ML, CAKIR C, BOS JB, MILLER SA, MADDEN LV, KAMOUN S, HOITINK HJ. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382[J]. Phytopathology, 2007, 97(4): 429-437.
    [29] CARPENTER MA, RIDGWAY HJ, STRINGER AM, HAY AJ, STEWART A. Characterisation of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens[J]. Current Genetics, 2008, 53(4): 193-205.
    [30] 赵兴丽, 陶刚, 赵玳琳, 卯婷婷, 王廿, 顾金刚. 钩状木霉ACCC31649的GFP标记及其对辣椒定殖和促生作用[J]. 植物营养与肥料学报, 2017, 23(5): 1276-1285. ZHAO XL, TAO G, ZHAO DL, MAO TT, WANG N, GU JG. GFP-labeled transformation of Trichoderma hamatum ACCC31649 and its promotion on colonization and growth of pepper plants[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(5): 1276-1285 (in Chinese).
    [31] KOVÁCS C, CSÓTÓ A, PÁL K, NAGY A, FEKETE E, KARAFFA L, KUBICEK CP, SÁNDOR E. The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines. part I. isolation, identification and in vitro studies[J]. Pathogens (Basel, Switzerland), 2021, 10(12): 1612.
    [32] PEDRERO-MÉNDEZ A, INSUASTI HC, NEAGU T, ILLESCAS M, RUBIO MB, MONTE E, HERMOSA R. Why is the correct selection of Trichoderma strains important? the case of wheat endophytic strains of T. harzianum and T. simmonsii[J]. Journal of Fungi (Basel, Switzerland), 2021, 7(12): 1087.
    [33] 庄文颖. 中国真菌志第六十卷肉座菌科[M]. 北京: 科学出版社, 2020 ZHUANG WY. Flora Fungorum Sinicorum Vol: LX Hypocreaceae[M]. Beijing: Science Press, 2020 (in Chinese).
    [34] 纪程, 孙玉香, 孟圆, 刘耀斌, 徐聪, 张永春, 谷益安, 汪吉东. 稻麦轮作体系长期秸秆还田对土壤真菌群落结构及秸秆降解潜力的影响[J]. 农业环境科学学报, 2022, 41(4): 819-825. JI C, SUN YX, MENG Y, LIU YB, XU C, ZHANG YC, GU YA, WANG JD. Effects of long-term straw incorporation on soil fungal community structure and straw decomposition potential in a rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2022, 41(4): 819-825 (in Chinese).
    [35] 李鹏. 筛选产纤维素酶的木霉及菌株8985产酶的固态发酵条件优化[D]. 北京: 中国科学院大学硕士学位论文, 2021. LI P. Screening Trichoderma sp. producing cellulase and optimization of solid-state fermentation conditions of strain 8985 producing cellulase[D]. Beijing: Master’s Thesis of University of Chinese Academy of Sciences, 2021 (in Chinese).
    [36] Baskaran R, Krishnan C. Enhanced production of cellulase from a novel strain Trichoderma gamsii M501 through response surface methodology and its application in biomass saccharification[J]. Process Biochemistry, 2020, 99: 48-60.
    [37] 萨如拉, 高聚林, 于晓芳, 胡树平. 玉米秸秆低温降解复合菌系的筛选[J]. 中国农业科学, 2013, 46(19): 4082-4090. SARULA, GAO JL, YU XF, HU SP. Screening of low temperature maize stalk decomposition microorganism[J]. Scientia Agricultura Sinica, 2013, 46(19): 4082-4090 (in Chinese).
    [38] 张鑫, 青格尔, 高聚林, 于晓芳, 胡树平, 张必周, 韩升才, 冯彪. 玉米秸秆低温降解复合菌的筛选及其菌种组成[J]. 农业环境科学学报, 2021, 40(7): 1565-1574. ZHANG X, QINGGEER, GAO JL, YU XF, HU SP, ZHANG BZ, HAN SC, FENG B. Screening and composition of the microbial consortium with corn straw decomposition under low temperature[J]. Journal of Agro-Environment Science, 2021, 40(7): 1565-1574 (in Chinese).
    [39] 王一然, 康志超, 朱国鹏, 王洋, 其格其, 于洪文. 耐低温玉米秸秆降解菌群的优化及其效果[J]. 浙江农业学报, 2022, 34(12): 2720-2727. WANG YR, KANG ZC, ZHU GP, WANG Y, QI GQ, YU HW. Optimization of low temperature resistant corn stalk degrading bacterial community and its effect[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2720-2727 (in Chinese).
    [40] 李鹏, 庄文颖. 液态发酵条件下拟康宁木霉8985产纤维素酶能力初探[J]. 菌物学报, 2022, 41(2): 281-290. LI P, ZHUANG WY. Cellulase production by Trichoderma koningiopsis 8985 under liquid state fermentation[J]. Mycosystema, 2022, 41(2): 281-290 (in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZENG Ye, ZHUANG Wenying, YU Zhihe, ZENG Zhaoqing. Screening of Trichoderma strains for maize straw degradation at low temperature[J]. Microbiology China, 2023, 50(9): 3939-3951

Copy
Share
Article Metrics
  • Abstract:229
  • PDF: 781
  • HTML: 612
  • Cited by: 0
History
  • Received:December 13,2022
  • Adopted:February 15,2023
  • Online: September 04,2023
  • Published: September 20,2023
Article QR Code