Drug resistance detection and whole genome sequencing of a multi-drug resistant Escherichia coli strain from sewage
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • | | | |
  • Comments
    Abstract:

    [Background] The water environment with wide distribution and high mobility is the main medium for the spread of drug resistant bacteria and genes. [Objective] To understand the drug resistance genes and mobile genetic elements carried by Escherichia coli from a sewage plant in northern China. [Methods] A multi-drug resistant strain of E. coli was isolated from the sewage plant. The antimicrobial susceptibility test was carried out. The 96-well plate method was employed to determine the minimum inhibitory concentrations of antibiotics against this strain. The effects of antibiotics at sub-inhibitory concentrations on the growth of the strain were explored by a microplate reader. The whole genome sequencing was carried out to predict the resistance genes and mobile genetic elements carried by the strain. [Results] E. coli WEC was resistant to tetracycline, ciprofloxacin, norfloxacin, and erythromycin. Sub-inhibitory concentrations of tetracycline, ciprofloxacin, and norfloxacin stagnated or inhibited the growth of strains. The genome of WEC was composed of a circular chromosome of 4 782 114 bp and two circular plasmids of 60 306 bp (pWEC-1) and 92 065 bp (pWEC-2), respectively. The strain carried 129 drug resistance genes, of which 128 were located on the chromosome. Prophages, gene islands, and insertion sequences was predicted to be present on the chromosome, and some mobile genetic elements carried drug resistance genes. There was no drug resistance gene in plasmid pWEC-1, and pWEC-2 carried one drug resistance gene. Prophages and insertion sequences were predicted to be present in the plasmid genome. [Conclusion] E. coli WEC from sewage is a multi-drug resistant strain. Carrying drug resistance genes and a variety of mobile genetic elements, the strain has the potential of drug resistance transfer.

    Reference
    [1] 迟小惠, 冯友军, 郑焙文. 耐药菌在人-动物-环境中的传播和遗传机制[J]. 微生物学通报, 2019, 46(2): 311-318. CHI XH, FENG YJ, ZHENG BW. Transmission and genetic mechanism of drug-resistant bacteria in multi-sectors[J]. Microbiology China, 2019, 46(2): 311-318 (in Chinese).
    [2] 贺竹梅, 王敏婷. 模式生物研究与遗传学发展[J].高校生物学教学研究(电子版), 2019, 9(4): 57-64. HE ZM, WANG MT. Genetics development and the application of model organisms[J]. Biology Teaching in University (Electronic Edition), 2019, 9(4): 57-64 (in Chinese).
    [3] KAWAHARA R, YAMAGUCHI T, YAMAMOTO Y. Comparative genome analysis of livestock and human colistin-resistant Escherichia coli isolates from the same household[J]. Infection and Drug Resistance, 2021, 14: 841-847.
    [4] TRONGJIT S, CHUANCHUEN R. Whole genome sequencing and characteristics of Escherichia coli with co-existence of ESBL and mcr genes from pigs[J]. PLoS One, 2021, 16(11): e0260011.
    [5] EL ZOWALATY ME, HICKMAN RA, GAMBUSHE SM, ZISHIRI OT, EL ZOWALATY AE, JÄRHULT JD. Genome sequences of two multidrug-resistant Escherichia coli strains MEZEC8 and MEZEC10 isolated from livestock in South Africa[J]. Journal of Global Antimicrobial Resistance, 2020, 23: 445-449.
    [6] WYRSCH ER, CHOWDHURY PR, WALLIS L, CUMMINS ML, ZINGALI T, BRANDIS KJ, DJORDJEVIC SP. Whole-genome sequence analysis of environmental Escherichia coli from the faeces of straw-necked ibis (Threskiornis spinicollis) nesting on inland wetlands[J]. Microbial Genomics, 2020, 6(6): e000385.
    [7] WANG KY, LI PH, LI JH, HU XF, LIN YF, YANG L, QIU SF, MA H, LI P, SONG HB. An NDM-1-producing Acinetobacter towneri isolate from hospital sewage in China[J]. Infection and Drug Resistance, 2020, 13: 1105-1110.
    [8] FURLAN JPR, LOPES R, RAMOS MS, dos SANTOS LDR, da SILVA ROSA R, SAVAZZI EA, STEHLING EG. Colistin-resistant mcr-1-positive Escherichia coli ST1775-H137 co-harboring blaCTX-M-2 and blaCMY-2 recovered from an urban stream[J]. Infection, Genetics and Evolution, 2021, 96: 105156.
    [9] 卢汉清, 张铮, 郑琳, 只帅, 滕良方, 张莺. 污水厂再生水中耐氯大肠杆菌筛查及细菌耐药性分析[J]. 中国给水排水, 2022, 38(3): 43-49. LU HQ, ZHANG Z, ZHENG L, ZHI S, TENG LF, ZHANG Y. Isolation of chlorine, resistant Escherichia coli and bacterial antibiotic resistance surveillance from reclaimed wastewater of municipal wastewater treatment plants[J]. China Water & Wastewater, 2022, 38(3): 43-49 (in Chinese).
    [10] GREVSKOTT DH, SALVÀ-SERRA F, MOORE ERB, MARATHE NP. Nanopore sequencing reveals genomic map of CTX-M-type extended-spectrum β-lactamases carried by Escherichia coli strains isolated from blue mussels (Mytilus edulis) in Norway[J]. BMC Microbiology, 2020, 20(1): 134.
    [11] PETER S, BOSIO M, GROSS C, BEZDAN D, GUTIERREZ J, OBERHETTINGER P, LIESE J, VOGEL W, DÖRFEL D, BERGER L, MARSCHAL M, WILLMANN M, GUT I, GUT M, AUTENRIETH I, OSSOWSKI S. Tracking of antibiotic resistance transfer and rapid plasmid evolution in a hospital setting by nanopore sequencing[J]. mSphere, 2020, 5(4): e00525-20.
    [12] GU J, LI YX, XU CW, XIE XJ, LI P, MA GX, LEI CW, LIU JX, ZHANG AY. Genome sequence of multidrug-resistant Erysipelothrix rhusiopathiae ZJ carrying several acquired antimicrobial resistance genes[J]. Journal of Global Antimicrobial Resistance, 2020, 21: 13-15.
    [13] 林本夫, 任欣悦, 袁晓琪, 梁梦诗, 丘穗萍, 潘婧淇, 原丽红. 细菌全基因组测序技术用于沙门氏菌流行病学调查的可行性分析[J]. 中国动物检疫, 2022, 39(6): 125-131. LIN BF, REN XY, YUAN XQ, LIANG MS, QIU SP, PAN JQ, YUAN LH. Feasibility analysis on bacterial whole genome sequencing for epidemiological investigation on Salmonella[J]. China Animal Health Inspection, 2022, 39(6): 125-131 (in Chinese).
    [14] 苏梦茹, 马培培, 李鑫鑫, 刘沉, 李妍, 姚倩, 郭抗抗. 9种抗菌药物对大肠埃希菌最小抑菌浓度的测定[J]. 动物医学进展, 2020, 41(3): 52-56. SU MR, MA PP, LI XX, LIU C, LI Y, YAO Q, GUO KK. Determination of minimum inhibitory concentration of nine antibacterial drugs to Escherichia coli[J]. Progress in Veterinary Medicine, 2020, 41(3): 52-56 (in Chinese).
    [15] 朱丽萍, 张文成, 颜世敢, 陈蕾蕾, 崔生辉. 细菌核心基因组多位点序列分型(cgMLST)与溯源评价[J]. 畜牧与兽医, 2021, 53(6): 140-146. ZHU LP, ZHANG WC, YAN SG, CHEN LL, CUI SH. Evaluation of core genome multilocus sequence typing and traceability of bacteria[J]. Animal Husbandry & Veterinary Medicine, 2021, 53(6): 140-146 (in Chinese).
    [16] LIU B, ZHENG DD, JIN Q, CHEN LH, YANG J. VFDB 2019: a comparative pathogenomic platform with an interactive web interface[J]. Nucleic Acids Research, 2019, 47(D1): D687-D692.
    [17] LI XB, XIE YZ, LIU M, TAI C, SUN JY, DENG ZX, OU HY. oriTfinder: a web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements[J]. Nucleic Acids Research, 2018, 46(W1): W229-W234.
    [18] SIGUIER P, PEROCHON J, LESTRADE L, MAHILLON J, CHANDLER M. ISfinder: the reference centre for bacterial insertion sequences[J]. Nucleic Acids Research, 2006, 34(Database issue): D32-D36.
    [19] VERNIKOS GS, PARKHILL J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands[J]. Bioinformatics, 2006, 22(18): 2196-2203.
    [20] 朱福琳. 基于四面体DNA纳米结构的微流控平台用于致病性大肠杆菌的综合性研究[D]. 上海: 上海海洋大学硕士学位论文, 2020. ZHU FL. A tetrahedral DNA nanostructure-based microfluidic platform for the integrated studying of pathogenic Escherichia coli[D]. Shanghai: Master’s Thesis of Shanghai Ocean University, 2020 (in Chinese).
    [21] de ANDRADE JPL, de MACÊDO FARIAS L, FERREIRA JFG, BRUNA-ROMERO O, Da GLÓRIA de SOUZA D, de CARVALHO MAR, dos SANTOS KV. Sub-inhibitory concentration of piperacillin-tazobactam may be related to virulence properties of filamentous Escherichia coli[J]. Current Microbiology, 2016, 72(1): 19-28.
    [22] DONG GF, LI JH, CHEN LJ, BI WZ, ZHANG XX, LIU HY, ZHI XY, ZHOU TL, CAO JM. Effects of sub-minimum inhibitory concentrations of ciprofloxacin on biofilm formation and virulence factors of Escherichia coli[J]. The Brazilian Journal of Infectious Diseases, 2019, 23(1): 15-21.
    [23] 高海娇, 程古月, 王玉莲, 宁佳囡, 陈婷, 李俊, 郝海红, 袁宗辉. 细菌主要外排泵及其调控蛋白研究进 展[J]. 畜牧兽医学报, 2017, 48(11): 2023-2033. GAO HJ, CHENG GY, WANG YL, NING JN, CHEN T, LI J, HAO HH, YUAN ZH. Research progress of the mainly bacterial efflux pumps and related regulator[J]. Chinese Journal of Animal and Veterinary Sciences, 2017, 48(11): 2023-2033 (in Chinese).
    [24] 于静晨, 王虹, 李鑫, 李亚芯, 汤芳, 戴建君. 53株禽致病性大肠杆菌的耐药表型及耐药基因的检测[J]. 畜牧与兽医, 2017, 49(5): 134-141. YU JC, WANG H, LI X, LI YX, TANG F, DAI JJ. Detection of resistance phenotypes and resistance determinants in 53 avian pathogenic Escherichia coli strains[J]. Animal Husbandry & Veterinary Medicine, 2017, 49(5): 134-141 (in Chinese).
    [25] 王永强, 李偲, 耿超, 马海滨, 阿嘎日, 窦亚平, 王婷婷, 王梓, 刘锴. 通辽地区犊牛腹泻大肠杆菌耐药性检测及一株多重耐药菌全基因组测序分析[J]. 微生物学通报, 2022, 49(12): 4964-4977. WANG YQ, LI C, GENG C, MA HB, AGARI, DOU YP, WANG TT, WANG Z, LIU K. Drug resistance of Escherichia coli strains causing calf diarrhea in Tongliao and whole-genome sequencing of a multi-drug resistant strain[J]. Microbiology China, 2022, 49(12): 4964-4977 (in Chinese).
    [26] 李贝贝, 朱晗钊, 张琦, 杨鹏, 金一, 何晓青. 影响微生物互作的重要基因研究进展:以大肠杆菌为例[J]. 微生物学通报, 2021, 48(9): 3071-3082. LI BB, ZHU HZ, ZHANG Q, YANG P, JIN Y, HE XQ. Research progress in important genes affecting microbial interactions: take Escherichia coli as an example[J]. Microbiology China, 2021, 48(9): 3071-3082 (in Chinese).
    [27] 陈红玲, 张兴桃, 王晴, 姚沛琳. 宏基因组方法分析医药化工废水厂中抗生素耐药菌及耐性基因[J]. 环境科学, 2020, 41(1): 313-320. CHEN HL, ZHANG XT, WANG Q, YAO PL. Metagenomic analysis of antibiotic resistant bacteria and resistance genes in a pharmaceutical and chemical wastewater treatment plant[J]. Environmental Science, 2020, 41(1): 313-320 (in Chinese).
    [28] FÀBREGA A, MARTIN RG, ROSNER JL, TAVIO MM, VILA J. Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(3): 1218-1225.
    [29] 张传珍, 常满霞, 杨磊, 刘艳艳, 陈品仙, 蒋红霞. MarA和SoxS共同调节大肠杆菌K12外排泵AcrAB-TolC的表达[J]. 中国兽医学报, 2017, 37(12): 2370-2377. ZHANG CZ, CHANG MX, YANG L, LIU YY, CHEN PX, JIANG HX. Co-regulation of MarA and SoxS on expression of AcrAB-TolC in development of ciprofloxacin resistance in E. coli K12[J]. Chinese Journal of Veterinary Science, 2017, 37(12): 2370-2377 (in Chinese).
    [30] PU YY, ZHAO ZL, LI YX, ZOU J, MA Q, ZHAO YN, KE YH, ZHU Y, CHEN HY, BAKER MAB, GE H, SUN YJ, XIE XS, BAI F. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells[J]. Molecular Cell, 2016, 62(2): 284-294.
    [31] 杜瑾鸿, 张泽宇, 刘祎佳, 范馨月, 刘怡蕾, 刘理慧, 程古月. 三种常见革兰阴性菌的毒力与耐药性关系的研究进展[J]. 国外医药(抗生素分册), 2022, 43(5): 297-305. DU JH, ZHANG ZY, LIU YJ, FAN XY, LIU YL, LIU LH, CHENG GY. Relationship between virulence and antimicrobial resistance in three common gram-negative bacteria species[J]. World Notes on Antibiotics, 2022, 43(5): 297-305 (in Chinese).
    [32] 刘玲红, 胡明, 刘玉庆. 山东省动物源多重高抗大肠杆菌的抗药基因和毒力基因分析[J]. 家禽科学, 2022(6): 4-15. LIU LH, HU M, LIU YQ. Analysis of antibiotic resistance genes and virulence genes of multiple high resistant Escherichia coli from animals in Shandong Province[J]. Poultry Science, 2022(6): 4-15 (in Chinese).
    [33] 李国涛, 薛海玲, 姚远. 细菌Cpx双组分信号转导系统应对外界环境变化的响应调节机制研究进展[J]. 微生物学通报, 2021, 48(8): 2881-2894. LI GT, XUE HL, YAO Y. Research progress of Cpx two-component system in bacteria[J]. Microbiology China, 2021, 48(8): 2881-2894 (in Chinese).
    [34] MIYAKE Y, YAMAMOTO K. Epistatic effect of regulators to the adaptive growth of Escherichia coli[J]. Scientific Reports, 2020, 10: 3661.
    [35] 胡慧慧. 核蛋白H-NS和双组份信号转导系统CpxAR协调调控IncFⅡ质粒接合的分子机制[D]. 郑州: 河南农业大学硕士学位论文, 2020. HU HH. The coordinate regulation mechanism of H-NS and CpxAR on IncFⅡ plasmid conjugation[D]. Zhengzhou: Master’s Thesis of Henan Agricultural University, 2020 (in Chinese).
    [36] 孙华润. 副猪嗜血杆菌携带耐药基因的可移动遗传元件分析[D]. 郑州: 河南农业大学博士学位论文, 2022. SUN HR. Analysis of mobile genetic elements carrying antibiotic resistance genes in Glaesserella parasuis[D]. Zhengzhou: Doctoral Dissertation of Henan Agricultural University, 2022 (in Chinese).
    [37] 于瑞. 猪链球菌耐药相关可移动遗传元件的鉴定及其水平传播机制[D]. 郑州: 河南农业大学博士学位论文, 2022. YU R. Characterization of mobile genetic elements associated with antimicrobial resistance in Streptococcus suis and its mechanism of horizontal transmission[D]. Zhengzhou: Doctoral Dissertation of Henan Agricultural University, 2022 (in Chinese).
    [38] JIANG H, CHENG H, LIANG Y, YU ST, YU T, FANG JH, ZHU C. Diverse mobile genetic elements and conjugal transferability of sulfonamide resistance genes (Sul1, Sul2, and Sul3) in Escherichia coli isolates from Penaeus vannamei and pork from large markets in Zhejiang, China[J]. Frontiers in Microbiology, 2019, 10: 1787.
    [39] 祝希辉, 庞喆羽, 王志伟, 裴兰英, 曹胜亮, 薛希娟, 李玉保. 致病性大肠杆菌携带原噬菌体的预测及耐药性与毒力研究[J]. 中国畜牧兽医, 2022, 49(3): 1126-1134. ZHU XH, PANG ZY, WANG ZW, PEI LY, CAO SL, XUE XJ, LI YB. Prediction of prophage carrying by pathogenic Escherichia coli and its drug resistance and virulence[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(3): 1126-1134 (in Chinese).
    [40] 王芳. 沙门菌多重耐药基因岛1(SGI1)研究进展[J]. 中国抗生素杂志, 2010, 35(6): 414-420. WANG F. Progresses on Salmonella multi-drug resistance genomic island 1(SGI1)[J]. Chinese Journal of Antibiotics, 2010, 35(6): 414-420 (in Chinese).
    [41] 李博洋, 姚天歌, 栾仁栋, 王红宁, 雷昌伟. 奇异变形杆菌中基因岛介导的多重耐药传播研究进展[J]. 微生物学通报, 2021, 48(3): 916-923. LI BY, YAO TG, LUAN RD, WANG HN, LEI CW. Research progress in transmission of multidrug resistance mediated by genomic Islands in Proteus mirabilis[J]. Microbiology China, 2021, 48(3): 916-923 (in Chinese).
    [42] 梁丽, 石继春, 陈驰, 龙新星, 叶强, 徐颖华. 不同时期分离的鼠伤寒沙门氏菌全基因组学分析研究[J]. 中国药事, 2022, 36(12): 1403-1413. LIANG L, SHI JC, CHEN C, LONG XX, YE Q, XU YH. Whole-genomic sequence analysis of Salmonella typhimurium isolated in dif ferent periods[J]. Chinese Pharmaceutical Affairs, 2022, 36(12): 1403-1413 (in Chinese).
    [43] 张孟思, 朱德康, 汪铭书. 细菌插入序列中的转座酶和转座机制[J]. 中国生物化学与分子生物学报, 2018, 34(10): 1057-1064. ZHANG MS, ZHU DK, WANG MS. Transposases in bacterial insertion sequences and their transposition mechanisms[J]. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34(10): 1057-1064 (in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CUI Hong, WANG Jihua, CHE Qi, HUANG Han, ZHU Jianqin. Drug resistance detection and whole genome sequencing of a multi-drug resistant Escherichia coli strain from sewage[J]. Microbiology China, 2023, 50(9): 3800-3817

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 05,2023
  • Adopted:March 11,2023
  • Online: September 04,2023
  • Published: September 20,2023
Article QR Code