Potato glycoalkaloids affect the respiration and reactive oxygen species metabolism of Fusarium solani
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • | | | |
  • Comments
    Abstract:

    [Background] Fusarium solani, a ubiquitous pathogenic fungus, can cause a variety of soil borne diseases of plants and is one of the main pathogens causing root rot of Lycium barbarum. Potato glycoalkaloids (PGAs) have strong activity against F. solani and their source plants are widely cultivated with low cost. [Objective] To observe the effects of PGAs on the respiration and reactive oxygen species (ROS) metabolism of F. solani and decipher the possible antibacterial mechanism from the perspective of energy metabolism. [Methods] PGAs were extracted from potato buds by acetic acid and ammonia precipitation method, and F. solani was selected as the test pathogen. The inhibitory effect of PGAs on the mycelial growth of F. solani in PDA and PDB was investigated and the concentration for 50% of maximum effect (EC50) was determined. The effect of PGAs on the respiration of F. solani was detected by an oxygen electrode. The effects of PGAs on the antioxidant enzyme system, ROS, and the metabolite malondialdehyde (MDA) of F. solani were studied in PDB. [Results] The PGA treatment decreased the mycelial respiration rate in a concentration and time-dependent manner and increased the content of intracellular hydrogen peroxide (H2O2) and superoxide anion (O2) (P<0.05). Furthermore, the treatment caused the imbalance of the peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) system, aggravated the membrane lipid peroxidation, and increased MDA content. Transmission electron microscopy results showed that the PGA treatment broke the mitochondrial membrane, caused the loss of mitochondrial contents, and destroyed the mitochondria of F. solani. [Conclusion] PGAs inhibit the respiration and reactive oxygen species metabolism, destroy mitochondria, the main organelle of the energy metabolism pathway, and finally inhibit the mycelial growth of F. solani.

    Reference
    [1] LESLIE JF, SUMMERELL BA. The fusarium laboratory manual[M]. Ames, Iowa:Blackwell Pub., 2006.
    [2] 牛世全, 耿晖, 韩彩虹, 阎薇如, 达文燕. 甘肃陇西黄芪根腐病病原菌的分离与鉴定[J]. 西北师范大学学报(自然科学版), 2016, 52(2):75-78, 83. NIU SQ, GENG H, HAN CH, YAN WR, DA WY. Isolation and identification of pathogens causing Astragalus membranaceus root rot in Gansu Longxi[J]. Journal of Northwest Normal University (Natural Science Edition), 2016, 52(2):75-78, 83 (in Chinese).
    [3] RAMPERSAD SN. Pathogenomics and management of Fusarium diseases in plants[J]. Pathogens, 2020, 9(5):340.
    [4] ELGAYYAR M, DRAUGHON FA, GOLDEN DA, MOUNT JR. Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms[J]. Journal of Food Protection, 2001, 64(7):1019-1024.
    [5] 段光明, 冯彩萍. 马铃薯糖苷生物碱[J]. 植物生理学通讯, 1992, 28(6):457-461. DUAN GM, FENG CP. Glycoalkaloids of potato[J]. Plant Physiology Communications, 1992, 28(6):457-461 (in Chinese).
    [6] 段光明, 刘加, 李霞. 马铃薯糖苷生物碱的生物学作用及开发利用[J]. 资源开发与市场, 1995, 11(2):61-65, 96. DUAN GM, LIU J, LI X. Biological effect of potato glycoalkaloids, its development and application[J]. Resource Development & Market, 1995, 11(2):61-65, 96 (in Chinese).
    [7] ALLEN E H, KUĆ J. α-Solanine and α-chaconine as fungitoxic compounds in extracts of Irish potato tubers[J]. Phytopathology, 1968, 58(6):776-781.
    [8] 陈伟. 马铃薯糖苷生物碱对枸杞鲜果采后诱导抗病性及保鲜作用研究[D]. 兰州:甘肃农业大学硕士学位论文, 2018. CHEN W. Study on induced resistance to postharvest disease and its fresh-keeping effect of potato glycoalkaloids on Lycium barbarum L. fresh fruits[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2018 (in Chinese).
    [9] 多甜甜. 马铃薯糖苷生物碱对五种经济林病原真菌的抑菌活性及其机理研究[D]. 兰州:甘肃农业大学硕士学位论文, 2017. DUO TT. Studies on antibiotic activity and mechanism of total glycoalkaloid extract against five economic forest plant pathogenic fungus[D]. Lanzhou:Master's Thesis of Gansu Agricultural University, 2017 (in Chinese).
    [10] 曹博文, 韩育梅, 孙培珍, 莎日娜. 金属盐结合马铃薯糖苷生物碱对灰葡萄孢菌引起樱桃番茄腐烂抑制效果的研究[J]. 内蒙古农业大学学报(自然科学版), 2014, 35(4):90-94. CAO BW, HAN YM, SUN PZ, SHA RN. Inhibition study of metal salts combined with potato glycoalkaloids on cherry tomatoes decay induced by Botrytis cinerea[J]. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2014, 35(4):90-94 (in Chinese).
    [11] HE J, DUO T T, CHEN W. ZHANG XY. Mechanism of action of potato glycoalkaloids against Fusarium solani[J]. International Journal of Agriculture & Biology, 2021, 25(4):873-880.
    [12] 多甜甜, 何静, 陈伟, 张金文, 冯生辉, 马鸿雁, 杜鹃, 党永旭. 马铃薯糖苷生物碱的抑菌活性及其对菌体细胞膜透性的影响[J]. 甘肃农业大学学报, 2017, 52(5):50-54. DUO TT, HE J, CHEN W, ZHANG JW, FENG SH, MA HY, DU J, DANG YX. Antifungal activity of potato glycoalkaloid and its effect on fungi cell membrane permeability[J]. Journal of Gansu Agricultural University, 2017, 52(5):50-54 (in Chinese).
    [13] 瞿佳, 门欣, 陈锐, 孙晓宇, 赵玲侠, 宁硕瀛. 核桃黑斑病拮抗放线菌WMF106的筛选、鉴定及防效[J]. 微生物学通报, 2021, 48(10):3621-3631. QU J, MEN X, CHEN R, SUN XY, ZHAO LX, NING SY. Screening, identification and biocontrol effect of antagonistic actinomycete WMF106 against walnut blight[J]. Microbiology China, 2021, 48(10):3621-3631 (in Chinese).
    [14] 薄丽丽, 孙晓彦, 林浩, 戴明婧, 牛继平, 张金文, 王蒂. 马铃薯中糖苷生物碱的提取研究[J]. 安徽农业科学, 2012, 40(3):1448, 1492. BO LL, SUN XY, LIN H, DAI MJ, NIU JP, ZHANG JW, WANG D. Study on extraction of glycoalkaloids in potato[J]. Journal of Anhui Agricultural Sciences, 2012, 40(3):1448, 1492 (in Chinese).
    [15] 方中达. 植病研究方法[M]. 3版. 北京:中国农业出版社, 1998. FANG ZD. Research methods of plant diseases[M]. 3rd ed. Beijing:China Agriculture Press, 1998 (in Chinese).
    [16] CHANCE B, WILLIAMS GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization[J]. The Journal of Biological Chemistry, 1955, 217(1):383-393.
    [17] 王熠, 彭丽桃. 一种意大利青霉线粒体提取方法[P]. 中国:CN109321474A, 2019-02-12. WANG Y, PENG LT. Italian penicillium mitochondria extraction method[P]. China:CN109321474A, 2019-02-12 (in Chinese).
    [18] 尚春雨. Β-蒎烯对柑橘青霉病菌的抑菌机理研究[D]. 武汉:华中农业大学硕士学位论文, 2017. SHANG CY. Studies about antifungal mechainsm of β-pinene against Penicillium of citrus[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2017 (in Chinese).
    [19] 吴方丽. 丙烷脒对番茄灰霉病菌的抑菌机理初探[D]. 杨凌:西北农林科技大学博士学位论文, 2008. WU FL. Primary study on inhibiting mechanism of propamidine against Botrytis cinerea[D]. Yangling:Doctoral Dissertation of Northwest A & F University, 2008 (in Chinese).
    [20] GUO T, MA YL, GUO P, XU ZR. Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis[J]. Veterinary Microbiology, 2005, 105(2):113-122.
    [21] 刘俊, 吕波, 徐朗莱. 植物叶片中过氧化氢含量测定方法的改进[J]. 生物化学与生物物理进展, 2000, 27(5):548-551. LIU J, LÜ B, XU LL. Improved method for the determination of hydrogen peroxide in leaves[J]. Progress in Biochemistry and Biophysics, 2000, 27(5):548-551 (in Chinese).
    [22] 潘瑞炽, 董愚得. 植物生理学[M]. 3版. 北京:高等教育出版社, 1995, 318-335. PAN RC, DONG YD. Plant physiology[M]. 3rd ed. Beijing:Higher Education Press, 1995, 318-335 (in Chinese).
    [23] 吕淑霞. 基础生物化学[M]. 北京:中国农业出版社, 2003. LÜ SX. Basic biochemistry[M]. Beijing:China Agriculture Press, 2003 (in Chinese).
    [24] GIANNOPOLITIS CN, RIES SK. Superoxide dismutases:I. Occurrence in higher plants[J]. Plant Physiology, 1977, 59(2):309-314.
    [25] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000. LI HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press, 2000 (in Chinese).
    [26] 高俊凤. 植物生理学实验指导[M]. 高等教育出版社, 2006:208-218. GAO JF. Experimental guide to plant physiology[M]. Higher Education Press, 2006:208-218 (in Chinese).
    [27] 王琴琴, 蔡兴东, 吴义, 马洪明, 黄志宏, 林敏娟, 陈丽, 骆文志, 廖华, 林嘉欣, 车丽, 刘升明. 鲍曼不动杆菌体外诱导耐药及其诱导前后交叉耐药和呼吸耗氧率分析[J]. 微生物学通报, 2020, 47(3):852-859. WANG QQ, CAI XD, WU Y, MA HM, HUANG ZH, LIN MJ, CHEN L, LUO WZ, LIAO H, LIN JX, CHE L, LIU SM. Intermediate resistance development in Acinetobacter baumannii in vitro and analysis of bacterial respiratory[J]. Microbiology China, 2020, 47(3):852-859 (in Chinese).
    [28] POYTON RO, BALL KA, CASTELLO PR. Mitochondrial generation of free radicals and hypoxic signaling[J]. Trends in Endocrinology and Metabolism:TEM, 2009, 20(7):332-340.
    [29] RIGOULET M, YOBOUE ED, DEVIN A. Mitochondrial ROS generation and its regulation:mechanisms involved in H2O2 signaling[J]. Antioxidants & Redox Signaling, 2011, 14(3):459-468.
    [30] 杨立宾, 宋瑞清, 李冲伟. 哈茨木霉发酵液乙酸乙酯提取物对致病疫霉生理指标的影响[J]. 北京林业大学学报, 2013, 35(2):92-96. YANG LB, SONG RQ, LI CW. Effects of ethyl acetate extract of Trichoderma harzianum fermentation liquid on physiological index of Phytophthora infestans[J]. Journal of Beijing Forestry University, 2013, 35(2):92-96 (in Chinese).
    [31] 黄聪亮, 彭美芳, 陈文学. 草果萃取物对金黄色葡萄球菌的抑菌作用及其机理研究[J]. 食品工业, 2015, 36(9):185-188. HUANG CL, PENG MF, CHEN WX. Bacteriostatic action and mechanism of extract from amomum tsao-ko on Staphylococcus aureu[J]. The Food Industry, 2015, 36(9):185-188 (in Chinese).
    [32] 李天来, 高晓倩, 刘玉凤. 夜间低温胁迫下钙对番茄幼苗根系活力及活性氧代谢的调控作用[J]. 西北农业学报, 2011, 20(8):127-132. LI TL, GAO XQ, LIU YF. Effects of calcium on root activity and metabolism of reactive oxygen species of tomato seedlings under low night temperature stress[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(8):127-132 (in Chinese).
    [33] WOLFF SP, GARNER A, DEAN RT. Free radicals, lipids and protein degradation[J]. Trends in Biochemical Sciences, 1986, 11(1):27-31.
    [34] 覃鹏, 刘飞虎, 梁雪妮. 超氧化物歧化酶与植物抗逆性[J]. 黑龙江农业科学, 2002(1):31-34. QIN P, LIU FH, LIANG XN. Superoxide dismutase and plant resistance to the environmental stress[J]. Heilongjiang Agricultural Science, 2002(1):31-34 (in Chinese).
    [35] HOU WC, LU YL, LIU SY, LIN YH. Activities of superoxide dismutase and glutathione peroxidase in leaves of different cultivars of Liriope spicata L. on 10% SDS-PAGE gels[J]. Botanical Bulletin-Academia Sinica Taipei, 2003, 44(1):37-41.
    [36] GRANT JJ, LOAKE GJ. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]. Plant Physiology, 2000, 124(1):21-29.
    [37] 武淑娟, 贠建民, 王睿, 何奎, 毛永强, 赵风云, 张紊玮, 艾对元. 短小芽孢杆菌HN-10抗菌肽P-1对粉红单端孢细胞膜结构和活性氧代谢的影响[J]. 食品与发酵工业, 2021, 47(23):83-90. WU SJ, YUN JM, WANG R, HE K, MAO YQ, ZHAO FY, ZHANG WW, AI DY. Effects of antifungal peptide P-1 from Bacillus pumilus HN-10 on cell membrane structure and ROS metabolism of Trichothecium roseum[J]. Food and Fermentation Industries, 2021, 47(23):83-90 (in Chinese).
    [38] 王星星, 李永华, 韦莹莹, 陶能国, 邵兴锋. 茶树精油对灰葡萄孢霉活性氧代谢的影响[J]. 中国食品学报, 2018, 18(12):180-187. WANG XX, LI YH, WEI YY, TAO NG, SHAO XF. The effect of tea tree oil on reactive oxygen species metabolism of Botrytis cinerea[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(12):180-187 (in Chinese).
    [39] 周春华, 刘红霞, 韦军. 活性氧与果实成熟衰老[J]. 上海交通大学学报(农业科学版), 2002, 20(1):77-84. ZHOU CH, LIU HX, WEI J. The role of reactive oxygen species in ripening and senescing of fruit[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2002, 20(1):77-84 (in Chinese).
    [40] RICH PR, BONNER WD. The sites of superoxide anion generation in higher plant mitochondria[J]. Archives of Biochemistry and Biophysics, 1978, 188(1):206-213.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DING Dedong, ZHAO Jitao, HE Jing, HOU Caixia, LI Nan, ZHANG Chongqing, ZHAO Qian. Potato glycoalkaloids affect the respiration and reactive oxygen species metabolism of Fusarium solani[J]. Microbiology China, 2023, 50(7): 2937-2949

Copy
Share
Article Metrics
  • Abstract:265
  • PDF: 822
  • HTML: 583
  • Cited by: 0
History
  • Received:October 12,2022
  • Adopted:November 18,2022
  • Online: July 10,2023
  • Published: July 20,2023
Article QR Code