Effect of Bacillus velenzensis GDND-2 on the growth and development of Fusarium oxysporium from tobacco
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • | | | |
  • Comments
    Abstract:

    [Background] Root rot caused by Fusarium oxysporum is common in tobacco growing areas worldwide, severely threatening the quality and yield of tobacco. As chemical pesticides fail to effectively control the pathogen, biocontrol strains have attracted the interest of scholars. [Objective] To clarify the inhibitory effect of Bacillus velenzensis GDND-2 on the growth and development of F. oxysporium from tobacco. [Methods] The PDA containing 10% and 20% fermentation filtrate of GDND-2 was coated on glass slides, and then the conidia of F. oxysporum were inoculated. The effect of the fermentation filtrate on conidial germination, hyphal growth, sporulation, and pigment production of F. oxysporum was investigated, and the ultrastructure of F. oxysporum hyphae was observed by scanning and transmission electron microscopy. [Results] After the treatment with fermentation filtrate of GDND-2, the conidial germination was over 2 h late. The fermentation filtrate resulted in the malformation of germ tubes and early branching of hyphae. It inhibited the elongation of hyphae and thus they showed malformed spherical structure. The inhibition rates of hyphal growth by 10% and 20% fermentation filtrate were 53.41% and 61.58%, separately. The fermentation filtrate delayed the sporulation of the pathogen, significantly reduced the spore quantity, affected the conidial morphology, and promoted the pigment production by the pathogen. Under the action of 10% and 20% fermentation filtrate, the sporulation happened 20 h and 28 h late, respectively, and the inhibition rates of spore quantity were 52.11% and 78.85%, separately. The fermentation filtrate stimulated F. oxysporum to form microconidia. As for the ultrastructure of F. oxysporium, some hyphae swelled and malformed, with thinner cell wall, disappearance of cell membrane, cytoplasm exudation, and intracellular cavity structure. Some hyphae shriveled, twisted and thinned, and perforated in severe cases. Some hyphae cells were severely vesiculated and organelle distribution was uneven. In some cells, the number of liposomes increased obviously. [Conclusion] The fermentation filtrate of B. velenzensis GDND-2 inhibited the growth and development of F. oxysporum, including conidial germination, hyphal growth, and sporulation.

    Reference
    [1] 盖晓彤, 代快, 户艳霞, 王继明, 姜宁, 卢灿华, 夏振远. 云南省烟草镰刀菌根腐病菌遗传多样性分析[J]. 中国烟草学报, 2022, 28(5):113-120. GAI XT, DAI K, HU YX, WANG JM, JIANG N, LU CH, XIA ZY. Genetic diversity of Fusarium oxysporum isolates causing tobacco root rot in Yunnan[J]. Acta Tabacaria Sinica, 2022, 28(5):113-120 (in Chinese).
    [2] LAMONDIA JA. Fusarium wilt of tobacco[J]. Crop Protection, 2015, 73:73-77.
    [3] TJAMOS SE, MARKAKIS EA, ANTONIOU P, PAPLOMATAS EJ. First record of Fusarium wilt of tobacco in Greece imported as seedborne inoculum[J]. Journal of Phytopathology, 2006, 154(4):193-196.
    [4] ALVES-SANTOS FM, MARTÍNEZ-BERMEJO D, RODRÍGUEZ-MOLINA MC, DIEZ JJ. Cultural characteristics, pathogenicity and genetic diversity of Fusarium oxysporum isolates from tobacco fields in Spain[J]. Physiological and Molecular Plant Pathology, 2007, 71(1/2/3):26-32.
    [5] BIN JUSOH MN, ZIN NBM, NAGAO H. Vegetative compatibility group of Fusarium solani pathogenic to tobacco plant in peninsular Malaysia[J]. Songklanakarin Journal of Science and Technology (SJST), 2013, 35(6):615-621.
    [6] 桑维钧, 祝明亮, 吴兴禄, 钟黔英, 李永顺. 烟草镰刀菌根腐病研究初报[J]. 山地农业生物学报, 1998, 17(3):140-141, 145. SANG WJ, ZHU ML, WU XL, ZHONG QY, LI YS. A preliminary report of tobacco root rot caused by Fusarium sp.[J]. Journal of Mountain Agriculture and Biology, 1998, 17(3):140-141, 145 (in Chinese).
    [7] 陈瑞泰, 朱贤朝, 王智发, 郭振业, 董汉松, 王兰珍, 刘延荣, 石金开. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997, 18(4):1-7. CHEN RT, ZHU XC, WANG ZF, GUO ZY, DONG HS, WANG LZ, LIU YR, SHI JK. A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces (regions) in China[J]. Chinese Tobacco Science, 1997, 18(4):1-7 (in Chinese).
    [8] 陈志敏. 福建省烟草根茎病害诊断及防治药剂筛选[D]. 福州:福建农林大学硕士学位论文, 2009. CHEN ZM. Diagnosis and screening chemicals to control of tobacco root and stem diseases in Fujian Province[D]. Fuzhou:Master's Thesis of Fujian Agriculture and Forestry University, 2009 (in Chinese).
    [9] 赵杰. 山东省烟草镰刀菌根腐病病原及生物学特性的研究[D]. 北京:中国农业科学院硕士学位论文, 2013. ZHAO J. Identification and study on biological characteristics of the pathogen of Fusarium causing tobacco root-rot in Shandong Province[D]. Beijing:Master's Thesis of Chinese Academy of Agricultural Sciences, 2013 (in Chinese).
    [10] 陈高航. 烟草根腐病病原鉴定及其生物学特性观察[D]. 武汉:华中农业大学硕士学位论文, 2013. CHEN GH. The identification of tobacco root rot pathogen and its biological characteristics[D]. Wuhan:Master's Thesis of Huazhong Agricultural University, 2013 (in Chinese).
    [11] 李冰. 烟草新病害:茎黑腐病及安徽省烟田土壤几种病原物的分子检测研究[D]. 合肥:安徽农业大学硕士学位论文, 2013. LI B. New disease of tobacco:stems black rot and molecular detection of tobacco field pathogens in Anhui Province[D]. Hefei:Master's Thesis of Anhui Agricultural University, 2013 (in Chinese).
    [12] 田艳艳, 王伟杰, 苗圃, 李淑君, 康业斌. 河南烟草镰刀菌的初步分子鉴定[J]. 烟草科技, 2014, 47(11):89-92. TIAN YY, WANG WJ, MIAO P, LI SJ, KANG YB. Preliminary molecular identification of Fusarium infecting tobacco in Henan[J]. Tobacco Science & Technology, 2014, 47(11):89-92 (in Chinese).
    [13] 李海江, 王正平, 宋学立, 林娟, 刘迎昌, 赵凤霞. 河南省平顶山烟区烟草根腐病发病情况调查及EM菌剂防治效果研究[J]. 农学学报, 2017, 7(2):25-30. LI HJ, WANG ZP, SONG XL, LIN J, LIU YC, ZHAO FX. Tobacco root rot incidence in Pingdingshan tobacco area and control effects of EM microbial agent[J]. Journal of Agriculture, 2017, 7(2):25-30 (in Chinese).
    [14] 吴安忠, 程崖芝, 巫升鑫, 刘国坤, 张绍升, 肖顺. 烟草镰刀菌根腐病的病原鉴定[J]. 中国烟草学报, 2018, 24(2):135-140. WU AZ, CHENG YZ, WU SX, LIU GK, ZHANG SS, XIAO S. Identification of tobacco Fusarium root rot pathogen[J]. Acta Tabacaria Sinica, 2018, 24(2):135-140 (in Chinese).
    [15] 邱睿, 白静科, 李成军, 李淑君, 李小杰, 陈玉国, 胡亚静, 刘东升. 河南烟草镰刀菌的分子鉴定及致病性分析[J]. 中国烟草学报, 2018, 24(2):129-134. QIU R, BAI JK, LI CJ, LI SJ, LI XJ, CHEN YG, HU YJ, LIU DS. Molecular identification and pathogenicity analysis of tobacco Fusarium spp. in Henan[J]. Acta Tabacaria Sinica, 2018, 24(2):129-134 (in Chinese).
    [16] 邱睿, 李芳芳, 徐敏, 李成军, 李小杰, 陈玉国, 白静科, 孙玥涵, 李淑君. 烟草品种对镰刀菌根腐病的抗性鉴定[J]. 中国烟草学报, 2019, 25(4):59-63. QIU R, LI FF, XU M, LI CJ, LI XJ, CHEN YG, BAI JK, SUN YH, LI SJ. Evaluation of resistance to Fusarium root rot of selected tobacco varieties[J]. Acta Tabacaria Sinica, 2019, 25(4):59-63 (in Chinese).
    [17] 陈长卿, 褚逸轩, 谢昭, 曹哲铭, 姜云, 隋策, 高洁. 生物杀菌剂对烟草镰刀菌根腐病的防治效果及农艺性状的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(6):41-46. CHEN CQ, CHU YX, XIE Z, CAO ZM, JIANG Y, SUI C, GAO J. Control effect of biological fungicides on tobacco Fusarium root rot and influence on agronomic traits of tobacco[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(6):41-46 (in Chinese).
    [18] 刘利佳, 李芳芳, 何雷, 彭玉富, 丁永乐, 孙聚涛. 烟草镰刀菌根腐病病原菌的鉴定及其对5种杀菌剂的敏感性分析[J]. 河南农业科学, 2021, 50(7):101-109. LIU LJ, LI FF, HE L, PENG YF, DING YL, SUN JT. Pathogen identification of tobbaco Fusarium root rot and its sensitivity to five fungicides[J]. Journal of Henan Agricultural Sciences, 2021, 50(7):101-109 (in Chinese).
    [19] 姚晨虓, 李小杰, 李琦, 邱睿, 白静科, 刘畅, 陈玉国, 康业斌, 李淑君. 烟草尖孢镰刀菌拮抗真菌的筛选鉴定及促生作用研究[J]. 中国生物防治学报, 2021, 37(5):1066-1072. YAO CX, LI XJ, LI Q, QIU R, BAI JK, LIU C, CHEN YG, KANG YB, LI SJ. Screening and identification of antagonistic fungal against tobacco Fusarium oxysporum and its growth promotion effect[J]. Chinese Journal of Biological Control, 2021, 37(5):1066-1072 (in Chinese).
    [20] 樊炳君, 姚丽, 段娇, 罗昆艳, 杨雪刚, 焦钰, 朱国兴, 魏薇, 曹艳茹. 镰刀菌根腐病拮抗菌的筛选及鉴定[J]. 江苏农业科学, 2021, 49(20):132-137. FAN BJ, YAO L, DUAN J, LUO KY, YANG XG, JIAO Y, ZHU GX, WEI W, CAO YR. Screening and identification of antagonistic bacteria of Fusarium root rot[J]. Jiangsu Agricultural Sciences, 2021, 49(20):132-137 (in Chinese).
    [21] 刘畅, 姚晨虓, 李小杰, 李成军, 刘东升, 陆施羽, 李淑君. 复合生防菌剂对田间烟草根茎类病害的防治效果[J]. 烟草科技, 2021, 54(11):18-24. LIU C, YAO CX, LI XJ, LI CJ, LIU DS, LU SY, LI SJ. Control efficacies of composite biocontrol agents against tobacco rhizomatic diseases in fields[J]. Tobacco Science & Technology, 2021, 54(11):18-24 (in Chinese).
    [22] de BOER M, BOM P, KINDT F, KEURENTJES JJB, van der SLUIS I, van LOON LC, BAKKER PAHM. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms[J]. Phytopathology, 2003, 93(5):626-632.
    [23] 陈龙, 吴兴利, 闫晓刚, 魏炳栋, 张芳毓. 贝莱斯芽孢杆菌的分类、次级代谢产物及应用[J]. 家畜生态学报, 2020, 41(1):1-8. CHEN L, WU XL, YAN XG, WEI BD, ZHANG FY. The classification, secondary metabolites and application of Bacillus velezensis[J]. Journal of Domestic Animal Ecology, 2020, 41(1):1-8 (in Chinese).
    [24] 陶永梅, 潘洪吉, 黄健, 席昕, 李鹏, 卢志军. 新型生防微生物因子贝莱斯芽孢杆菌(Bacillus velezensis)的研究与应用[J]. 中国植保导刊, 2019, 39(9):26-33. TAO YM, PAN HJ, HUANG J, XI X, LI P, LU ZJ. Research and application of a novel bio-control microbial factor Bacillus velezensis[J]. China Plant Protection, 2019, 39(9):26-33 (in Chinese).
    [25] 刘莎莎, 程园园, 张丹, 王晓丹, 刘佳莉, 郭长虹. 两株紫花苜蓿根际芽孢杆菌的筛选及生防效果研究[J]. 草业学报, 2015, 24(9):96-103. LIU SS, CHENG YY, ZHANG D, WANG XD, LIU JL, GUO CH. Isolation, identification, and biocontrol effects of Bacillus spp. from the rhizosphere of alfalfa[J]. Acta Prataculturae Sinica, 2015, 24(9):96-103 (in Chinese).
    [26] 刘雪娇, 李红亚, 李术娜, 朱宝成, 高同国. 贝莱斯芽孢杆菌3A3-15生防和促生机制[J]. 河北大学学报(自然科学版), 2019, 39(3):302-310. LIU XJ, LI HY, LI SN, ZHU BC, GAO TG. Biocontrol and growth promotion mechanisms of Bacillus velezensis 3A3-15[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(3):302-310 (in Chinese).
    [27] 张昕, 张立钦, 马良进, 林海萍, 毛胜凤, 张炳欣. 生防菌ZJY-1抑菌作用的初步研究[J]. 浙江林学院学报, 2007, 24(1):91-95. ZHANG X, ZHANG LQ, MA LJ, LIN HP, MAO SF, ZHANG BX. Antagonistic activity of biocontrol bacterium ZJY-1 Brevibacillus brevis[J]. Journal of Zhejiang Forestry College, 2007, 24(1):91-95 (in Chinese).
    [28] 叶旭红, 林先贵, 王一明. 尖孢镰刀菌致病相关因子及其分子生物学研究进展[J]. 应用与环境生物学报, 2011, 17(5):759-762. YE XH, LIN XG, WANG YM. Progress in research on pathogenic factors and related molecular biology of Fusarium oxysporum[J]. Chinese Journal of Applied & Environmental Biology, 2011, 17(5):759-762 (in Chinese).
    [29] KIM HS, PARK SY, LEE S, ADAMS EL, CZYMMEK K, KANG S. Loss of cAMP-dependent protein kinase A affects multiple traits important for root pathogenesis by Fusarium oxysporum[J]. Molecular Plant-Microbe Interactions:MPMI, 2011, 24(6):719-732.
    [30] YUN YZ, ZHOU X, YANG S, WEN Y, YOU HX, ZHENG YR, NORVIENYEKU J, SHIM WB, WANG ZH. Fusarium oxysporum f. sp. lycopersici C2H2 transcription factor FolCzf1 is required for conidiation, fusaric acid production, and early host infection[J]. Current Genetics, 2019, 65(3):773-783.
    [31] LI B, GAO Y, MAO HY, BORKOVICH KA, OUYANG SQ. The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum f. sp. lycopersici[J]. Environmental Microbiology, 2019, 21(8):2696-2706.
    [32] 周欣, 云英子, 郭谱胜, 吴凯莉, 陈伟钟, 李江江, 周晓莉. 尖孢镰刀菌番茄专化型中APSES转录因子FolStuA的功能分析[J]. 分子植物育种, 2018, 16(3):772-780. ZHOU X, YUN YZ, GUO PS, WU KL, CHEN WZ, LI JJ, ZHOU XL. Functional analysis of APSES transcription factor folstu A in Fusarium oxysporum f. sp. lycopersici[J]. Molecular Plant Breeding, 2018, 16(3):772-780 (in Chinese).
    [33] 丁兆建, 漆艳香, 曾凡云, 彭军, 谢艺贤, 张欣. 转录因子FoSwi6调控香蕉枯萎病菌的生理特性和致病性[J]. 植物病理学报, 2018, 48(5):601-610. DING ZJ, QI YX, ZENG FY, PENG J, XIE YX, ZHANG X. A transcription factor FoSwi6 regulates physiology traits and virulence in Fusarium oxysporum f. sp. cubense[J]. Acta Phytopathologica Sinica, 2018, 48(5):601-610 (in Chinese).
    [34] 杨帅, 尤海霞, 李圣萱, 郭谱胜, 李美琴, 云英子, 王宗华. 尖孢镰刀菌番茄专化型中SNARE蛋白FolSso1的功能分析[J]. 植物病理学报, 2019, 49(4):530-538. YANG S, YOU HX, LI SX, GUO PS, LI MQ, YUN YZ, WANG ZH. Functional analysis of the SNARE protein FolSso1 in Fusarium oxysporum f. sp. lycopersici[J]. Acta Phytopathologica Sinica, 2019, 49(4):530-538 (in Chinese).
    [35] 董慧霞, 侯占铭. 尖孢镰刀菌亚麻专化型Folprp4基因参与调控菌丝生长和分生孢子发生[J]. 中国生物工程杂志, 2022, 42(3):13-26. DONG HX, HOU ZM. Folprp4 gene involved in the conidiogenesis and mycelial growth in Fusarium oxysporum f. sp. lini[J]. China Biotechnology, 2022, 42(3):13-26 (in Chinese).
    [36] 孙玲, 褚小静, 郝宇, 张洪滨, 梁元存. 尖孢镰刀菌FoPLC4参与调控孢子形成和致病性[J]. 中国农业科学, 2014, 47(12):2357-2364. SUN L, CHU XJ, HAO Y, ZHANG HB, LIANG YC. FoPLC4, encoding phospholipase C4, is involved in sporulation and pathogenicity in Fusarium oxysporum[J]. Scientia Agricultura Sinica, 2014, 47(12):2357-2364 (in Chinese).
    [37] 孔建, 赵白鸽, 王文夕, 河野满. 枯草芽孢杆菌抗菌物质对镰刀菌抑制机理的镜下研究[J]. 植物病理学报, 1998, 28(4):337-340. KONG J, ZHAO BG, WANG WX, HE YM. Survey on the antifungal mechanism of Bacillus subtilis Cohen to Fusarium oxysporum under the microscope[J]. Acta Phytopathologica Sinica, 1998, 28(4):337-340 (in Chinese).
    [38] 王瑞霞. 枯草芽孢杆菌B-903菌株的发酵条件及所产抗生素的研究[D]. 郑州:河南农业大学硕士学位论文, 2005. WANG RX. Studies on the fermentation conditions and antibiotic of Bacillus subtilis B-903 strain[D]. Zhengzhou:Master's Thesis of Henan Agricultural University, 2005 (in Chinese).
    [39] 孔建, 王文夕, 赵白鸽, 程红梅, 申效诚, 张桂芬. 枯草芽孢杆菌B-903菌株抗菌物质的研究[J]. 微生物学报, 1992, 32(6):445-449. KONG J, WANG WX, ZHAO BG, CHENG HM, SHEN XC, ZHANG GF. Study on characteristic of antifungu substance from Bacillus subtilis B-903 strain[J]. Acta Microbiologica Sinica, 1992, 32(6):445-449 (in Chinese).
    [40] MEDENTSEV AG, AKIMENKO VK. Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium[J]. Applied Biochemistry and Microbiology, 2005, 41(5):503-507.
    [41] 郑里翔, 蔡宇杰, 孟宪明, 徐敏娟, 李昌伟, 王巧凤, 王月, 廖祥儒. 镰刀菌色素抑制MCF-7乳腺癌细胞增殖的机制[J]. 中国药理学通报, 2014, 30(9):1229-1234. ZHENG LX, CAI YJ, MENG XM, XU MJ, LI CW, WANG QF, WANG Y, LIAO XR. Inhibitory effect of pigment produced by Fusarium sp JN158 on MCF-7 cell proliferation[J]. Chinese Pharmacological Bulletin, 2014, 30(9):1229-1234 (in Chinese).
    [42] MURIUKI E, HALL C, SASANYA JJ. Purification, analysis and antimicrobial activity of Fusarium graminearum pigment[J]. Plantation Lobby, 2008, 15:928.
    [43] ALMA RS, CARLOS DD, GUADALUPE V. The pigmentation of Fusarium verticillioides (Sacc.) as factor of virulence in maize seedlings[J]. Agrono Mesoam, 2011, 22(2):297-307.
    [44] 刘群, 王丽华, 陈东海, 彭伟建, 徐家兴, 李昆太. Streptomyces sp. N2所产农抗N2对橘青霉的拮抗活性及作用机制研究[J]. 江西农业大学学报, 2020, 42(3):487-493. LIU Q, WANG LH, CHEN DH, PENG WJ, XU JX, LI KT. The antagonistic activity and mechanism of the antifungalmycin N2 produced by Streptomyces sp. N2 against Penicillium citrinum[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(3):487-493 (in Chinese).
    [45] 李璇, 孔谦, 陈中健, 黄文洁, 吴绍文, 陈梦雨, 谭深源, 王婧, 晏石娟. 不同温度下黄曲霉菌菌丝超微形态的比较研究[J]. 菌物学报, 2021, 40(7):1648-1659. LI X, KONG Q, CHEN ZJ, HUANG WJ, WU SW, CHEN MY, TAN SY, WANG J, YAN SJ. Comparative study on ultrastructural characteristics of Aspergillus flavus grown under different temperature[J]. Mycosystema, 2021, 40(7):1648-1659 (in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SHEN Huifang, YANG Qiyun, ZHANG Jingxin, PU Xiaoming, SUN Dayuan, LIN Birun. Effect of Bacillus velenzensis GDND-2 on the growth and development of Fusarium oxysporium from tobacco[J]. Microbiology China, 2023, 50(7): 2876-2891

Copy
Share
Article Metrics
  • Abstract:224
  • PDF: 1015
  • HTML: 406
  • Cited by: 0
History
  • Received:July 12,2022
  • Adopted:January 17,2023
  • Online: July 10,2023
  • Published: July 20,2023
Article QR Code