Infection process of primary macrophages derived from kidney of Micropterus salmoides by Nocardia seriolae
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [54]
  • | | | |
  • Comments
    Abstract:

    [Background] Nocardiosis has a long incubation period and long disease duration, with high infection rate and mortality rate, which brings serious economic losses to aquaculture. Nocardia seriolae, the pathogen causing Nocardiosis, is an intracellular bacterium. The main pathogenesis of this disease is the chronic infection of N. seriolae. This pathogen invading largemouth bass (Micropterus salmoides) can cause white nodules, the products of the interaction between pathogen and macrophages. The bacteria are wrapped by necrotic cells in the white nodules, which make it difficult for antibiotic to kill the bacteria, resulting in death of fish. [Objective] To establish an in vitro model for the infection of largemouth bass head kidney macrophages by N. seriolae, observe the progression of infection, and elucidate the infection-induced apoptosis of macrophages. [Methods] The macrophages were isolated by density gradient centrifugation and identified by morphological observation, specific staining, and PCR amplification of macrophage-expressed gene mpeg1. The activity and function of macrophages were detected by CCK-8 method and oxygen respiratory burst activity assay. The morphological and quantitative changes of N. seriolae and macrophages during infection were observed via inverted fluorescence microscopy and flow cytometry. The apoptosis of macrophages was investigated by double fluorescence flow cytometry, lactate dehydrogenase (LDH) release assay, and mitochondrial membrane potential assay. [Results] High-purity macrophages were isolated from head kidney of largemouth bass and were identified as macrophages by staining and PCR methods. The medium was optimized as 1640 medium + 1% penicillin-streptomycin + 1% fetal bovine serum, in which the cells could survive for 72 h in vitro, with the survival rate as high as 80%±1.03% within 24 h. The oxygen respiratory burst activity of macrophages enhanced after lipopolysaccharide stimulation (P<0.05). The GFP-N. seriolae were phagocytosed by the macrophages at 2 h, became rounded with decreased adherence rate at 4 h, and proliferated and surrounded the macrophages at 6 h. A number of macrophages died at 8 h. The initial stage of infection witnessed the increase in the apoptosis rate of macrophages, the increase in the release of LDH, and the decrease in the mitochondrial membrane potential. With the prolongation of infection, the apoptosis rate, the amount of LDH released, and the mitochondrial membrane potential decreased. It implied that apoptosis was promoted in the initial of infection and then inhibited as the infection prolonged. [Conclusion] This study successfully established an in vitro model for the infection of largemouth bass head kidney macrophages by N. seriolae. It confirmed that N. seriolae infected and survived in macrophages by inhibiting apoptosis. This study provided information for further studying the interaction between N. seriolae and macrophages and elucidating the pathogenic mechanism of N. seriolae.

    Reference
    [1] LIU YS, CHEN GQ, XIA LQ, LU YS. A review on the pathogenic bacterium Nocardia seriolae: aetiology, pathogenesis, diagnosis and vaccine development[J]. Reviews in Aquaculture, 2022: 1-21.
    [2] 罗愿, 邓玉婷, 赵飞, 谭爱萍, 张美超, 姜兰. 9株鱼源鰤诺卡氏菌生物学特征和致病性比较[J]. 微生物学通报, 2021, 48(8): 2733-2749. LUO Y, DENG YT, ZHAO F, TAN AP, ZHANG MC, JIANG L. Comparative on characteristics and pathogenicity of Nocardia seriolae isoalted from 9 fishes[J]. Microbiology China, 2021, 48(8): 2733-2749(in Chinese).
    [3] WANG F, WANG XG, LIU C, CHANG OQ, FENG YY, JIANG L, LI KB. Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection[J]. Veterinary Microbiology, 2017, 211: 67-73.
    [4] 赵江丽, 陈宣男, 姜铮, 王芳, 袁静, 甄清. 病原微生物胞内寄生机制的研究进展[J]. 中国热带医学, 2011, 11(1): 119-122. ZHAO JL, CHEN XN, JIANG Z, WANG F, YUAN J, ZHEN Q. Advance in the research of intracellular parasitic mechanism of pathogenic microorganisms[J]. China Tropical Medicine, 2011, 11(1): 119-122(in Chinese).
    [5] LEUNG KY, SIAME BA, TENKINK BJ, NOORT RJ, MOK YK. Edwardsiella tarda-virulence mechanisms of an emerging gastroenteritis pathogen[J]. Microbes and Infection, 2012, 14(1): 26-34.
    [6] DAVIS JM, RAMAKRISHNAN L. The role of the granuloma in expansion and dissemination of early tuberculous infection[J]. Cell, 2009, 136(1): 37-49.
    [7] RYCKAERT J, BOSSIER P, D’HERDE K, DIEZ-FRAILE A, SORGELOOS P, HAESEBROUCK F, PASMANS F. Persistence of Yersinia ruckeri in trout macrophages[J]. Fish & Shellfish Immunology, 2010, 29(4): 648-655.
    [8] BEHAR SM, BRIKEN V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity[J]. Current Opinion in Immunology, 2019, 60: 103-110.
    [9] 吴移谋, 王建业. 胞内寄生菌与宿主细胞凋亡的相互作用分子机制研究[J]. 中南医学科学杂志, 2021, 49(3): 249-252. WU YM, WANG JY. Advances in molecular mechanisms of the interaction between intracellular pathogens and host cell apoptosis[J]. Medical Science Journal of Central South China, 2021, 49(3): 249-252(in Chinese).
    [10] 杨超, 董浚键, 刘志刚, 孙成飞, 赵飞, 叶星. 大口黑鲈源维氏气单胞菌的分离鉴定[J]. 南方水产科学, 2021, 17(3): 54-61. YANG C, DONG JJ, LIU ZG, SUN CF, ZHAO F, YE X. Isolation and identification of Aeromonas veronii from diseased Micropterus salmoides[J]. South China Fisheries Science, 2021, 17(3): 54-61(in Chinese).
    [11] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022. Ministry of Agriculture and Rural Affairs of the People’s Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2022 China Fishery Statistics Yearbook[M]. Beijing: China Agriculture Press, 2022(in Chinese).
    [12] BAI JJ, LUTZ-CARRILLO DJ, QUAN YC, LIANG SX. Taxonomic status and genetic diversity of cultured largemouth bass Micropterus salmoides in China[J]. Aquaculture, 2008, 278(1/2/3/4): 27-30.
    [13] 张晗, 邓捷, 马红英, 赵虎, 吴艳, 王启军, 张红星, 孔飞. 大口黑鲈相关疾病及防治技术研究进展[J]. 河北渔业, 2022(2): 38-44. ZHANG H, DENG J, MA HY, ZHAO H, WU Y, WANG QJ, ZHANG HX, KONG F. Research progress on related diseases and control techniques of largemouth bass[J]. Hebei Fisheries, 2022(2): 38-44(in Chinese).
    [14] DOCKRELL HM. Immunology: a comparative approach[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1995, 89(3): 343-344
    [15] BRAUN-NESJE R, KAPLAN G, SELJELID R. Rainbow trout macrophages in vitro: morphology and phagocytic activity[J]. Developmental & Comparative Immunology, 1982, 6(2): 281-291.
    [16] TELES M, MACKENZIE S, BOLTAÑA S, CALLOL A, TORT L. Gene expression and TNF-alpha secretion profile in rainbow trout macrophages following exposures to copper and bacterial lipopolysaccharide[J]. Fish & Shellfish Immunology, 2011, 30(1): 340-346.
    [17] MACKENZIE S, PLANAS JV, GOETZ FW. LPS-stimulated expression of a tumor necrosis factor-alpha mRNA in primary trout monocytes and in vitro differentiated macrophages[J]. Developmental & Comparative Immunology, 2003, 27(5): 393-400.
    [18] NOWAK BF, DANG M, WEBBER C, NEUMANN L, BRIDLE A, BERMUDEZ R, EVANS D. Changes in the splenic melanomacrophage centre surface area in southern bluefin tuna (Thunnus maccoyii) are associated with blood fluke infections[J]. Pathogens: Basel, Switzerland, 2021, 10(1): 79.
    [19] 张永德, 潘传燕, 余艳玲, 冯鹏霏, 罗洪林. 永生化尼罗罗非鱼巨噬细胞系的建立及鉴定[J]. 水产学报, 2018, 42(3): 376-387. ZHANG YD, PAN CY, YU YL, FENG PF, LUO HL. Establishment and identification of immortalized macrophage cell line of tilapia (Oreochromis niloticus)[J]. Journal of Fisheries of China, 2018, 42(3): 376-387(in Chinese).
    [20] 陶会竹, 肖宁, 赵雨婷, 房慧, 李槿年. 草鱼肠巨噬细胞的分离培养与鉴定[J]. 水产学报, 2018, 42(10): 1606-1614. TAO HZ, XIAO N, ZHAO YT, FANG H, LI JN. Isolation, cultivation and identification of Ctenopharyngodon idella intestinal macrophages[J]. Journal of Fisheries of China, 2018, 42(10): 1606-1614(in Chinese).
    [21] 王宣刚, 孔祥福, 王欣桐, 李恒顺, 刘金相, 王志刚, 于海洋. 牙鲆头肾巨噬细胞的分离培养与鉴定[J]. 渔业科学进展, 2021, 42(5): 55-61. WANG XG, KONG XF, WANG XT, LI HS, LIU JX, WANG ZG, YU HY. Isolation, culture, and characterization of macrophages from the head kidney of Japanese flounder (Paralichthys olivaceus)[J]. Progress in Fishery Sciences, 2021, 42(5): 55-61(in Chinese).
    [22] 李庆飞, 崔坤, 艾庆辉, 麦康森. 培养温度对LPS诱导的离体大黄鱼头肾巨噬细胞抗氧化能力和炎性反应的影响[J]. 水产学报, 2019, 43(4): 810-819. LI QF, CUI K, AI QH, MAI KS. Effects of culture temperature on antioxidant capacity and inflammatory responses of LPS-induced macrophages from head kidney of large yellow croaker (Larimichthys crocea)[J]. Journal of Fisheries of China, 2019, 43(4): 810-819(in Chinese).
    [23] 郗明君, 刘立春, 张涓, 汤孝成, 刘小玲, 林蠡. 3种壳聚糖对团头鲂体外头肾吞噬细胞呼吸爆发功能的影响[J]. 华中农业大学学报, 2014, 33(3): 72-77. XI MJ, LIU LC, ZHANG J, TANG XC, LIU XL, LIN L. Effect of three chitosan on respiratory burst activity of head-kidney phagocytes in Wuchang bream (Megalobrama amblycephala)[J]. Journal of Huazhong Agricultural University, 2014, 33(3): 72-77(in Chinese).
    [24] 袁军法, 戴彩姣, 余利, 李莉娟. 一种大口黑鲈脑细胞系及其应用: CN113025574A[P]. 2022-07-26. YUAN JF, DAI CJ, YU L, LI LJ. Micropterus salmoides brain cell line and application thereof: CN113025574A[P]. 2022-07-26(in Chinese).
    [25] ZENG WW, DONG HX, CHEN XY, BERGMANN SM, YANG Y, WEI XX, TONG GX, LI H, YU H, CHEN YF. Establishment and characterization of a permanent heart cell line from largemouth bass Micropterus salmoides and its application to fish virology and immunology[J]. Aquaculture, 2022, 547: 737427.
    [26] 许丹, 律颖, 朱小语, 陈晓文, 冯金秋, 范爱琴, 许雅君. 小鼠单核巨噬细胞白血病细胞(RAW264.7)的培养及其在诱导破骨细胞中的应用[J]. 中国骨质疏松杂志, 2016, 22(10): 1355-1360. XU D, LÜ Y, ZHU XY, CHEN XW, FENG JQ, FAN AQ, XU YJ. Culture skill of RAW264.7 and its application in osteoclastic differentiation[J]. Chinese Journal of Osteoporosis, 2016, 22(10): 1355-1360(in Chinese).
    [27] 岳磊, 张垚, 张楠曦. 流式细胞仪检测线粒体膜电位方法的研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(4): 393-397. YUE L, ZHANG Y, ZHANG NX. Study on methods for detecting mitochondrial membrane potential by flow cytometry[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2015, 31(4): 393-397(in Chinese).
    [28] 胡廷仪, 仓绍义. 应用乳酸脱氢酶释放试验评定巨噬细胞膜通透性的变化[J]. 中国环境科学, 1990(6): 470-473. HU TY, CANG SY. The changes of macrophage membrane permeability were evaluated by lactate dehydrogenase release test[J]. China Environmental Science, 1990(6): 470-473(in Chinese).
    [29] MARTINEZ FO, GORDON S. The M1 and M2 paradigm of macrophage activation: time for reassessment[J]. F1000prime Reports, 2014, 6: 13.
    [30] LI QF, AI QH, MAI KS, XU W, ZHENG YF. A comparative study: in vitro effects of EPA and DHA on immune functions of head-kidney macrophages isolated from large yellow croaker (Larmichthys crocea)[J]. Fish & Shellfish Immunology, 2013, 35(3): 933-940.
    [31] 陈明, 王秋华, 王瑞, 甘西, 李莉萍, 雷爱莹, 梁万文, 黄维义. 重组tHsp70对罗非鱼腹腔巨噬细胞免疫功能的影响[J]. 中国水产科学, 2012, 19(1): 145-153. CHEN M, WANG QH, WANG R, GAN X, LI LP, LEI AY, LIANG WW, HUANG WY. Effects of recombinant tHsp70 on immune function of tilapia peritoneal macrophages[J]. Journal of Fishery Sciences of China, 2012, 19(1): 145-153(in Chinese).
    [32] QIU WH, LIU S, CHEN JS, HU L, WU MH, YANG M. The primary culture of carp (Cyprinus carpio) macrophages and the verification of its phagocytosis activity[J]. In Vitro Cellular & Developmental Biology - Animal, 2016, 52(1): 10-19.
    [33] AWASTHI A, RATHORE G, PRADHAN PK, REBELLO SC, KHAN MY, LAKRA WS. Isolation and characterization of head kidney derived macrophages of Labeo rohita[J]. Journal of Environmental Biology, 2014, 35(5): 949-954.
    [34] PHAM PH, LUMSDEN JS, TAFALLA C, DIXON B, BOLS NC. Differential effects of viral hemorrhagic septicaemia virus (VHSV) genotypes IVa and IVb on gill epithelial and spleen macrophage cell lines from rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2013, 34(2): 632-640.
    [35] 徐德志, 陆新江, 鲁建飞, 陈炯. 香鱼IGF-1基因特性及其对单核巨噬细胞的功能调控[J]. 农业生物技术学报, 2019, 27(5): 785-798. XU DZ, LU XJ, LU JF, CHEN J. Gene characterization of ayu (Plecoglossus altivelis) IGF-1 and its functional regulation on monocytes/macrophages[J]. Journal of Agricultural Biotechnology, 2019, 27(5): 785-798(in Chinese).
    [36] 王秋华, 陈明, 黄维义, 王瑞, 李莉萍, 甘西, 雷爱莹, 黄均, 梁万文. 罗非鱼腹腔巨噬细胞分离与培养[J]. 华北农学报, 2011, 26(S2): 224-228. WANG QH, CHEN M, HUANG WY, WANG R, LI LP, GAN X, LEI AY, HUANG J, LIANG WW. Separation and cultivation of Tilapia peritoneal macrophage[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 224-228(in Chinese).
    [37] GRAYFER L, WALSH JG, BELOSEVIC M. Characterization and functional analysis of goldfish (Carassius auratus L.) tumor necrosis factor-alpha[J]. Developmental & Comparative Immunology, 2008, 32(5): 532-543.
    [38] 胡先勤, 周建军, 胡骏鹏, 王学东, 王文彪, 王锐. 斑点叉尾[鱼回]头肾巨噬细胞分离及初步应用[J]. 齐鲁渔业, 2019(6): 7-10. HU XQ, ZHOU JJ, HU JP, WANG XD, WANG WB, WANG R. Separation and preliminary application of head kidney macrophages in channel catfish (Ietalurus punetaus)[J]. Shandong Fisheries, 2019(6): 7-10(in Chinese).
    [39] LU XJ, CHEN J. Specific function and modulation of teleost monocytes/macrophages: polarization and phagocytosis[J]. Zoological Research, 2019, 40(3): 146-150.
    [40] NEUMANN NF, BARREDA DR, BELOSEVIC M. Generation and functional analysis of distinct macrophage sub-populations from goldfish (Carassius auratus L.) kidney leukocyte cultures[J]. Fish and Shellfish Immunology, 2000, 10(1): 1-20.
    [41] STAFFORD JL, MCLAUCHLAN PE, SECOMBES CJ, ELLIS AE, BELOSEVIC M. Generation of primary monocyte-like cultures from rainbow trout head kidney leukocytes[J]. Developmental & Comparative Immunology, 2001, 25(5-6): 447-459.
    [42] DREVETS DA, CANONO BP, CAMPBELL PA. Measurement of bacterial ingestion and killing by macrophages[J]. Current Protocols in Immunology, 2015, 109: 14.6.1-14.614.6.17.
    [43] SPILSBURY K, O'MARA MA, WU WM, ROWE PB, SYMONDS G, TAKAYAMA Y. Isolation of a novel macrophage-specific gene by differential cDNA analysis[J]. Blood, 1995, 85(6): 1620-1629.
    [44] KARLSSON KR, COWLEY S, MARTINEZ FO, SHAW M, MINGER SL, JAMES W. Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3[J]. Experimental Hematology, 2008, 36(9): 1167-1175.
    [45] ZAKRZEWSKA A, CUI C, STOCKHAMMER OW, BENARD EL, SPAINK HP, MEIJER AH. Macrophage-specific gene functions in Spi1-directed innate immunity[J]. Blood, 2010, 116(3): e1-e11.
    [46] 常藕琴, 霍礼霞, 罗满林, 石存斌, 张德峰, 潘厚军, 任燕. 草鱼肾中性粒细胞的分离鉴定与活性检测[J]. 中国水产科学, 2021, 28(12): 1515-1522. CHANG OQ, HUO LX, LUO ML, SHI CB, ZHANG DF, PAN HJ, REN Y. Isolation, identification, and activity detection of neutrophils from the grass carp kidney[J]. Journal of Fishery Sciences of China, 2021, 28(12): 1515-1522(in Chinese).
    [47] 刘春, 陈晓虹, 姜兰, 曹际振, 李凯彬, 王英英, 常藕琴, 王芳, 石存斌, 林明辉, 王庆. 鮰爱德华氏菌的红色荧光蛋白标记及其应用[J]. 江苏农业学报, 2019, 35(3): 661-666. LIU C, CHEN XH, JIANG L, CAO JZ, LI KB, WANG YY, CHANG OQ, WANG F, SHI CB, LIN MH, WANG Q. Construction and application of Edwardsiella ictaluri strain labelled with mCherry fluorescent protein[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(3): 661-666(in Chinese).
    [48] QIN L, SUN YY, ZHAO YJ, XU J, BI KR. In vitro model to estimate Edwardsiella tarda-macrophage interactions using RAW264.7 cells[J]. Fish & Shellfish Immunology, 2017, 60: 177-184.
    [49] 秦蕾, 孙玉英, 毕可然, 高迎莉. 迟缓爱德华氏菌对大菱鲆巨噬细胞相关生物效应分子产生的影响[J]. 水产科学, 2018, 37(2): 239-243. QIN L, SUN YY, BI KR, GAO YL. Effects of Edwardsiella tarda on derelopment of related effector molecules by macrophage from turbot[J]. Fisheries Science, 2018, 37(2): 239-243(in Chinese).
    [50] 毛伟平, 张娜娜, 魏传静, 周雷, 冯娟, 刘洪云. 镉对HEK 293细胞线粒体损伤作用[J]. 中国公共卫生, 2008, 24(12): 1531-1533. MAO WP, ZHANG NN, WEI CJ, ZHOU L, FENG J, LIU HY. Cadmium induced mitochondrial damage in HEK 293 cell[J]. Chinese Journal of Public Health, 2008, 24(12): 1531-1533(in Chinese).
    [51] 竺飞燕, 张雄, 王百辰, 胡智伟. 鱼藤酮诱导PC12细胞凋亡及线粒体膜电位变化[J]. 中国药理学通报, 2014, 30(2): 266-269. ZHU FY, ZHANG X, WANG BC, HU ZW. Rotenone induces apoptosis of PC12 cells and alteration in mitochondrial membrane potential[J]. Chinese Pharmacological Bulletin, 2014, 30(2): 266-269(in Chinese).
    [52] 王楚涵, 罗涛, 鲍朗. 结核分枝杆菌感染引起的细胞损伤与死亡[J]. 国际免疫学杂志, 2020, 43(2): 178-183. WANG CH, LUO T, BAO L. Cell damage and cell death caused by Mycobacterium tuberculosis[J]. International Journal of Immunology, 2020, 43(2): 178-183(in Chinese).
    [53] 李杨, 周栋, 尹彦龙, 张广冻, 相彩霞, 支飞杰, 白芙蓉, 林鹏飞, 靳亚平, 王爱华. 布鲁氏菌OMP16对RAW264.7细胞凋亡与免疫活性的影响[J]. 畜牧兽医学报, 2022, 53(8): 2642-2651. LI Y, ZHOU D, YIN YL, ZHANG GD, XIANG CX, ZHI FJ, BAI FR, LIN PF, JIN YP, WANG AH. Effects of Brucella outer membrane protein 16 on apoptosis and immune activity of RAW264.7 cells[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2642-2651(in Chinese).
    [54] CZUCZMAN MA, FATTOUH R, VAN RIJN JM, CANADIEN V, OSBORNE S, MUISE AM, KUCHROO VK, HIGGINS DE, BRUMELL JH. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread[J]. Nature, 2014, 509(7499): 230-234.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIU Wenwen, DENG Yuting, ZHU Xueqing, ZHAO Fei, TAN Aiping, WANG Fang, ZHANG Meichao, HUANG Zhibin. Infection process of primary macrophages derived from kidney of Micropterus salmoides by Nocardia seriolae[J]. Microbiology China, 2023, 50(6): 2602-2623

Copy
Share
Article Metrics
  • Abstract:390
  • PDF: 1002
  • HTML: 648
  • Cited by: 0
History
  • Received:September 10,2022
  • Adopted:September 28,2022
  • Online: June 05,2023
  • Published: June 25,2023
Article QR Code