Cumulative effect of mutations at conserved sites of GH42 family on the catalytic activity of β-galactosidase BgaB from Geobacillus stearothermophilus
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [42]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] The weak transglycosidase activity of β-galactosidase and the hydrolyzable property of the product galactooligosaccharides (GOS) results in the low product yield. [Objective] To study the effect of mutations at highly conserved sites of glycoside hydrolase family 42 (GH42) on the catalytic activity of the β-galactosidase BgaB from Geobacillus stearothermophilus.[Methods] On the basis of the functional analyses of single site mutations, the conserved sites E303 and F341 were cumulatively mutated by the combination of site-directed mutagenesis and chemical modification. [Results] The double-site mutant Ox-E303C/F341S was constructed. Compared with the wild-type enzyme, the double mutations reduced the hydrolysis activity to 30% and increased the GOS yield from 0.75% to 19.50%. [Conclusion] The cumulative mutations of conserved sites enable co-evolution of single-site mutant functions. Reducing the hydrolytic activity and substrate inhibition can improve the transglycosidase activity of β-galactosidases. This work provides a reference for the modification and regulation of the transglycosylating activity of GH42 β-galactosidases.

    Reference
    [1] AMBROGI V, BOTTACINI F, SHARRY JM, van BREEN J, O'KEEFFE E, WALSH D, SCHOEMAKER B, CAO LQ, KUIPERS B, LINDNER C, JIMENO ML, DOYAGÜEZ EG, HERNANDEZ-HERNANDEZ O, MORENO FJ, SCHOTERMAN M, van SINDEREN D. Bifidobacterial β-galactosidase-mediated production of galacto-oligosaccharides: structural and preliminary functional assessments[J]. Frontiers in Microbiology, 2021, 12: 750635.
    [2] WANG G, WANG H, JIN Y, XIAO Z, UMAR YAQOOB M, LIN Y, CHEN H, WANG M. Galactooligosaccharides as a protective agent for intestinal barrier and its regulatory functions for intestinal microbiota[J]. Food Research International, 2022, 155: 111003.
    [3] MARÁZ A, KOVÁCS Z, BENJAMINS E, PÁZMÁNDI M. Recent developments in microbial production of high-purity galacto-oligosaccharides[J]. World Journal of Microbiology & Biotechnology, 2022, 38(6): 95.
    [4] HASSAN N, GEIGER B, GANDINI R, PATEL BKC, KITTL R, HALTRICH D, NGUYEN TH, DIVNE C, TAN TC. Engineering a thermostable Halothermothrix orenii beta-glucosidase for improved galacto-oligosaccharide synthesis[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3533-3543.
    [5] GONZALEZ CP, CAGNONI AJ, MARINO KV, FONTANA C, SAENZ-MÉNDEZ P, IRAZOQUI G, GIACOMINI C. Enzymatic synthesis of non-natural trisaccharides and galactosides; Insights of their interaction with galectins as a function of their structure[J]. Carbohydrate Research, 2019, 472: 1-15.
    [6] MOVAHEDPOUR A, AHMADI N, GHALAMFARSA F, GHESMATI Z, KHALIFEH M, MALEKSABET A, SHABANINEJAD Z, TAHERI-ANGANEH M, SAVARDASHTAKI A. β-Galactosidase: from its source and applications to its recombinant form[J]. Biotechnology and Applied Biochemistry, 2021: 1-17.
    [7] MANO MCR, NERI-NUMA IA, DA SILVA JB, PAULINO BN, PESSOA MG, PASTORE GM. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(1): 17-37.
    [8] YAN YR, GUAN WS, LI XY, GAO KE, XU XX, LIU B, ZHANG W, ZHANG YH. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity[J]. Bioengineered, 2021, 12(1): 8908-8919.
    [9] SILVERIO SC, MACEDO EA, TEIXEIRA JA, RODRIGUES LR. New beta-galactosidase producers with potential for prebiotic synthesis[J]. Bioresource Technology, 2018, 250: 131-139.
    [10] KITTIBUNCHAKUL S, MAISCHBERGER T, DOMIG KJ, KNEIFEL W, NGUYEN HM, HALTRICH D, NGUYEN TH. Fermentability of a novel galacto-oligosaccharide mixture by Lactobacillus spp. and Bifidobacterium spp.[J]. Molecules (Basel, Switzerland), 2018, 23(12): 3352.
    [11] LEE H, NOBREGA DE MOURA BELL JML, BARILE D. Discovery of novel high-molecular weight oligosaccharides containing N-acetylhexosamine in bovine colostrum whey permeate hydrolyzed with Aspergillus oryzae β-galactosidase[J]. Journal of Agricultural and Food Chemistry, 2019, 67(12): 3313-3322.
    [12] HANSSON T, KAPER T, VAN DER OOST J, DE VOS WM, Adlercreutz P. Improved oligosaccharide synthesis by protein engineering of beta-glucosidase CelB from hyperthermophilic Pyrococcus furiosus[J]. Biotechnology and Bioengineering, 2001, 73(3): 203-210.
    [13] PLACIER G, WATZLAWICK H, RABILLER C, MATTES R. Evolved beta-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production[J]. Applied and Environmental Microbiology, 2009, 75(19): 6312-6321.
    [14] WU Y, YUAN S, CHEN S, WU D, CHEN J, WU J. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus beta-galactosidase[J]. Food Chemistry, 2012, 138(2-3): 1588-1595.
    [15] GAO X, WU J, WU D. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production[J]. Food Chemistry, 2019, 286: 362-367.
    [16] URRUTIA P, BERNAL C, WILSON L, ILLANES A. Use of chitosan heterofunctionality for enzyme immobilization: beta-galactosidase immobilization for galacto-oligosaccharide synthesis[J]. International Journal of Biological Macromolecules, 2018, 116: 182-193.
    [17] USVALAMPI A, MAAHEIMO H, TOSSAVAINEN O, FREY AD. Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures[J]. Glycoconjugate Journal, 2018, 35(1): 31-40.
    [18] YU L, O’SULLIVAN DJ. Immobilization of whole cells of Lactococcus lactis containing high levels of a hyperthermostable β-galactosidase enzyme in chitosan beads for efficient galacto-oligosaccharide production[J]. Journal of Dairy Science, 2018, 101(4): 2974-2983.
    [19] DONG YN, WANG L, GU Q, CHEN HQ, LIU XM, SONG YD, CHEN W, HAGLER AT, ZHANG H, XU J. Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme[J]. Molecular Diversity, 2013, 17(2): 371-382.
    [20] DONG YN, LIU XM, CHEN HQ, XIA Y, ZHANG HP, ZHANG H, CHEN W. Enhancement of the hydrolysis activity of beta-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis[J]. Journal of Dairy Science, 2011, 94(3): 1176-1184.
    [21] COCKBURN DW, VANDENENDE C, CLARKE AJ. Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi[J]. Biochemistry, 2010, 49(9): 2042-2050.
    [22] ENGELEN AJ, RANDSDORP PH. Determination of neutral lactase activity in industrial enzyme preparations by a colorimetric enzymatic method: collaborative study[J]. Journal of AOAC International, 1999, 82(1): 112-118.
    [23] OLSON BJSC. Assays for determination of protein concentration[J]. Current Protocols in Pharmacology, 2016, 73: A.3A.1-A.3A.32.
    [24] WANG X, CHEN S, FAN L, LIU H, CHEN S, YE X, LI Z, CUI Z, HUANG Y. Characterization of a halotolerant GH2 family β-galactosidase GalM from Microvirga sp. strain MC18[J]. Protein Expression and Purification. 2022, 194: 106074.
    [25] SUN J, YAO C, LI Y, WANG W, HAO J, YU Y. A novel salt-tolerant GH42β-galactosidase with transglycosylation activity from deep-sea metagenome[J]. World Journal of Microbiology & Biotechnology, 2022, 38(9): 154.
    [26] KITTIBUNCHAKUL S, PHAM ML, TRAN AM, NGUYEN TH. beta-Galactosidase from Lactobacillus helveticus DSM 20075: biochemical characterization and recombinant expression for applications in dairy industry[J]. International Journal of Molecular Sciences, 2019, 20(4): 947.
    [27] GODOY AS, CAMILO CM, KADOWAKI MA, DOS S MUNIZ H, SANTO ME, MURAKAMI MT, NASCIMENTO AS, POLIKARPOV I. Crystal structure of beta1→6-galactosidase from Bifidobacterium bifidum S17: trimeric architecture, molecular determinants of the enzymatic activity and its inhibition by alpha -galactose[J]. The FEBS Journal, 2016, 283(22): 4097-4112.
    [28] van LEEUWEN SS, KUIPERS BJH, DIJKHUIZEN L, KAMERLING JP. Comparative structural characterization of 7 commercial galacto-oligosaccharide (GOS) products[J]. Carbohydrate Research, 2016, 425: 48-58.
    [29] QIN ZM, LI SF, HUANG X, KONG W, YANG XP, ZHANG SF, CAO LC, LIU YH. Improving galactooligosaccharide synthesis efficiency of beta-galactosidase Bgal1-3 by reshaping the active site with an intelligent hydrophobic amino acid scanning[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11158-11166.
    [30] KUMAR R, HENRISSAT B, COUTINHO PM. Intrinsic dynamic behavior of enzyme: substrate complexes govern the catalytic action of beta -galactosidases across clan GH-A[J]. Scientific Reports, 2019, 9(1): 10346.
    [31] 董艺凝, 陈海琴, 张灏, 陈卫. 嗜热脂肪芽孢杆菌耐热β-半乳糖苷酶功能位点的累积进化研究[J]. 食品工业科技, 2015, 36(7): 148-153. DONG YN, CHEN HQ, ZHANG H, CHEN W. Coevolutionary study on the functionary amino acid residues of Geobacillus stearothermophilus thermostable β-galactosidase BgaB[J]. Science and Technology of Food Industry, 2015, 36(7): 148-153(in Chinese).
    [32] 董艺凝. 耐热β-半乳糖苷酶BgaB分子改造以及突变体性质研究[D]. 无锡: 江南大学博士学位论文, 2011. DONG YN. Molecular modification and characterization of thermostable β-galactosidase BgaB mutants[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2011(in Chinese).
    [33] 董艺凝, 陈卫, 陈海琴, 赵建新, 陈永泉, 张灏. 嗜热脂肪芽孢杆菌(Geobacillus stearothermophilus)来源耐热β-半乳糖苷酶BgaB转糖苷催化活性改造[J]. 食品与发酵工业, 2020, 46(2): 1-6. DONG YN, CHEN W, CHEN HQ, ZHAO JX, CHEN YQ, ZHANG H. Enhances transglycosylation activity of thermostable β-galactosidase BgaB from Geobacillus stearothermophilus[J]. Food and Fermentation Industries, 2020, 46(2): 1-6(in Chinese).
    [34] STRAZZULLI A, COBUCCI-PONZANO B, CARILLO S, BEDINI E, CORSARO MM, POCSFALVI G, WITHERS SG, ROSSI M, MORACCI M. Introducing transgalactosylation activity into a family 42 beta -galactosidase[J]. Glycobiology, 2017, 27(5): 425-437.
    [35] YIN HF, PIJNING T, MENG XF, DIJKHUIZEN L, van LEEUWEN SS. Biochemical characterization of the functional roles of residues in the active site of the β-galactosidase from Bacillus circulans ATCC 31382[J]. Biochemistry, 2017, 56(24): 3109-3118.
    [36] SHAIKH FA, MÜLLEGGER J, HE SM, WITHERS SG. Identification of the catalytic nucleophile in Family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis[J]. FEBS Letters, 2007, 581(13): 2441-2446.
    [37] MANGIAGALLI M, LAPI M, MAIONE S, ORLANDO M, BROCCA S, PESCE A, BARBIROLI A, CAMILLONI C, PUCCIARELLI S, LOTTI M, NARDINI M. The co-existence of cold activity and thermal stability in an antarctic GH42β-galactosidase relies on its hexameric quaternary arrangement[J]. The FEBS Journal, 2021, 288(2): 546-565.
    [38] LIU P, WU JW, LIU JH, OUYANG J. Engineering of a β-galactosidase from Bacillus coagulans to relieve product inhibition and improve hydrolysis performance[J]. Journal of Dairy Science, 2021, 104(10): 10566-10575.
    [39] Kumar R, Henrissat B, Coutinho PM. Intrinsic dynamic behavior of enzyme: substrate complexes govern the catalytic action of β-galactosidases across clan GH-A. Scientific Reports. 2019, 9(1): 10346.
    [40] Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the various sources of β-galactosidase and its lactose hydrolysis property. Current Microbiology. 2023, 80(4): 122.
    [41] SHIPKOWSKI S, BRENCHLEY JE. Bioinformatic, genetic, and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are Arabinogalactan type I oligomer hydrolases[J]. Applied and Environmental Microbiology, 2006, 72(12): 7730-7738.
    [42] THAKUR M, RAI AK, SINGH SP. An acid-tolerant and cold-active β-galactosidase potentially suitable to process milk and whey samples[J]. Applied Microbiology and Biotechnology, 2022, 106(9/10): 3599-3610.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DONG Yining, CHEN Wei, ZHANG Hao, GU Haiyang, LIU Yang, CHEN Haiqin. Cumulative effect of mutations at conserved sites of GH42 family on the catalytic activity of β-galactosidase BgaB from Geobacillus stearothermophilus[J]. Microbiology China, 2023, 50(6): 2532-2544

Copy
Share
Article Metrics
  • Abstract:243
  • PDF: 974
  • HTML: 1146
  • Cited by: 0
History
  • Received:August 17,2022
  • Adopted:November 14,2022
  • Online: June 05,2023
  • Published: June 25,2023
Article QR Code