Effects of Streptomyces lydicus M01 on growth, bacterial wilt incidence, and rhizosphere bacterial community composition of tomatoes
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Streptomyces lydicus can efficiently promote the growth of many crops and inhibit many pathogenic fungi. However, there are few studies on the biocontrol effects of S. lydicus on bacterial wilt disease. [Objective] To explore whether S. lydicus M01 can promote tomato growth and inhibit tomato bacterial wilt disease and whether the effect of S. lydicus M01 on tomato growth is achieved by affecting the bacterial community structure in the rhizosphere.[Methods] The effects of S. lydicus M01 on plant growth, bacterial wilt incidence, and rhizosphere bacterial community composition of tomatoes were explored by the greenhouse pot experiments and high-throughput amplicon sequencing. [Results] Compared with the control, S. lydicus M01 increased fresh weight, dry weight, plant height, chlorophyll concentrations measured using soil and plant analyzer develotrnent methods, root vigor, and P content of tomato plants by 22.7%, 12.5%, 16.0%, 28.1%, 18.4%, and 17.9%, respectively. S. lydicus M01 significantly increased plant height, SPAD value, and P content of tomato plants (P<0.05). S. lydicus M01 delayed the onset time of bacterial wilt and decreased bacterial wilt incidence by 41.8% at 9 weeks after pathogen inoculation. Additionally, S. lydicus M01 had no significant effects on rhizosphere bacterial community composition (P=0.4 for microbiome composition at the phylum level and P=0.4 for microbiome composition at the genus level). [Conclusion] S. lydicus M01 can promote plant growth of tomatoes and suppress bacterial wilt of tomatoes, and these effects are not achieved by regulating rhizosphere bacterial community composition.

    Reference
    [1] GUO JH, LIU XJ, ZHANG Y, SHEN JL, HAN WX, ZHANG WF, CHRISTIE P, GOULDING KWT, VITOUSEK PM, ZHANG FS. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
    [2] 刘鑫, 王蕾, 胡飞龙, 马月, 于赐刚, 卢晓强, 刘立, 郑苏平. 《生物多样性公约》下有关农药化肥减量化要求及我国的对策建议[J]. 生态与农村环境学报, 2021, 37(9): 1129-1136. LIU X, WANG L, HU FL, MA Y, YU CG, LU XQ, LIU L, ZHENG SP. Requirements for reduction of pesticides and fertilizers under the convention on biological diversity and the countermeasure suggestions for China[J]. Journal of Ecology and Rural Environment, 2021, 37(9): 1129-1136(in Chinese).
    [3] NADEEM SM, AHMAD M, ZAHIR ZA, JAVAID A, ASHRAF M. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnology Advances, 2014, 32(2): 429-448.
    [4] TAN S, GU Y, YANG C, DONG Y, MEI X, SHEN Q, XU Y. Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion[J]. Biology and Fertility of Soils, 2015, 52(3): 341-351.
    [5] SUN L, CHENG L, MA YH, LEI P, WANG R, GU YA, LI S, ZHANG FH, XU H. Exopolysaccharides from Pantoea alhagi NX-11 specifically improve its root colonization and rice salt resistance[J]. International Journal of Biological Macromolecules, 2022, 209(Pt A): 396-404.
    [6] MATILLA MA, RAMOS JL, BAKKER PAHM, DOORNBOS R, BADRI DV, VIVANCO JM, RAMOS-GONZ MI. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation[J]. Environmental Microbiology Reports, 2010, 2(3): 381-388.
    [7] 李乐, 田敏娇, 高艳明, 李建设. 硒肥对基质培番茄生长和矿质元素积累的影响[J]. 浙江农业学报, 2020, 32(2): 253-261. LI L, TIAN MJ, GAO YM, LI JS. Effect of selenium fertilizer on growth and mineral element accumulation of tomato in substrate culture[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 253-261(in Chinese).
    [8] DALSING BL, TRUCHON AN, GONZALEZ-ORTA ET, MILLING AS, ALLEN C. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment[J]. mBio, 2015, 6(2): e02471.
    [9] 谷益安, 孙晨, 陈嘉欣, 刘雪, 董珂. 添加葡萄糖和胞外多糖条件下土壤细菌多样性与青枯病病原菌入侵关系研究[J]. 土壤通报, 2020, 51(1): 115-121. GU YA, SUN C, CHEN JX, LIU X, DONG K. Relationships between bacterial diversities and Ralstonia solanacearum invasion as affected by addition of glucose and extracellular polysaccharide[J]. Chinese Journal of Soil Science, 2020, 51(1): 115-121(in Chinese).
    [10] GU Y, HOU Y, HUANG D, HAO Z, WANG X, WEI Z, JOUSSET A, TAN S, XU D, SHEN Q, XU Y, FRIMAN VP. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption[J]. Plant and Soil, 2016, 415(1-2): 269-281.
    [11] HUANG J, WEI Z, HU J, YANG C, GU Y A, MEI X, SHEN Q, XU Y, RIAZ K. Chryseobacterium nankingense sp. nov. WR21 effectively suppresses Ralstonia solanacearum growth via intensive root exudates competition[J]. BioControl, 2017, 62(4): 567-577.
    [12] 周岗泉, 张秀冬, 刘琼光, 冯杭. 抗感青枯病番茄的内生细菌数量动态分析及其对青枯病的生物防治[J]. 微生物学通报, 2007, 34(5): 885-888. ZHOU GQ, ZHANG XD, LIU QG, FENG H. The dynamic of endophytic bacteria at different growth stage of tomato and biological control of tomato bacterial wilt[J]. Microbiology China, 2007, 34(5): 885-888(in Chinese).
    [13] YUAN WM, CRAWFORD DL. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots[J]. Applied and Environmental Microbiology, 1995, 61(8): 3119-3128.
    [14] 孙洪宝, 李茂营, 吴慧玲, 郭绍贵, 张洁, 任毅, 张海英, 宫国义, 许勇. 生防菌链霉菌对西瓜枯萎病防治及幼苗生长的影响[J]. 科学技术与工程, 2020, 20(13): 5074-5079. SUN HB, LI MY, WU HL, GUO SG, ZHANG J, REN Y, ZHANG HY, GONG GY, XU Y. Biocontrol and plant growth promoting effects of Streptomyces against Fusarium wilt in watermelon[J]. Science Technology and Engineering, 2020, 20(13): 5074-5079(in Chinese).
    [15] 云天艳. 抗香蕉枯萎病内生放线菌的分离鉴定及链霉菌5-4抑菌机制研究[D]. 海口: 海南大学博士学位论文, 2020. YUN TY. Isolation and identification of endophytic actinomycetes resistant to banana Fusarium wilt and study on antimicrobial mechanism of Streptomyces 5-4[D]. Haikou: Doctoral Dissertation of Hainan University, 2020(in Chinese).
    [16] 邢梦玉. 两株链霉菌对荔枝霜疫病的防病潜力和防病机理研究[D]. 广州: 华南农业大学博士学位论文, 2017. XING MY. Study on biocontrol potential and antifungal mechanism of Streptomyces TJGA-19 and BWL-H1 against Litchi downy blight[D]. Guangzhou: Doctoral Dissertation of South China Agricultural University, 2017(in Chinese).
    [17] 卢彩鸽, 刘伟成, 刘霆, 董丹, 张涛涛, 刘德文. 利迪链霉菌A01活性代谢产物对甘蓝枯萎病菌的抑制作用及其机理[J]. 中国农业科学, 2012, 45(18): 3764-3772. LU CG, LIU WC, LIU T, DONG D, ZHANG TT, LIU DW. The antifungal activity and action mechanism of metabolite produced by Streptomyces lydicus strain A01 against Fusarium oxysporum f. sp. conglutinans[J]. Scientia Agricultura Sinica, 2012, 45(18): 3764-3772(in Chinese).
    [18] WANG MX, XUE J, MA JJ, FENG XH, YING HJ, XU H. Streptomyces lydicus M01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternata on cucumbers[J]. Frontiers in Microbiology, 2020, 11: 942.
    [19] WIGGINS BE, KINKEL LL. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes[J]. Phytopathology, 2005, 95(2): 178-185.
    [20] LING L, HAN XY, LI X, ZHANG X, WANG H, ZHANG LD, CAO P, WU YT, WANG XJ, ZHAO JW, XIANG WS. A Streptomyces sp. NEAU-HV9: isolation, identification, and potential as a biocontrol agent against Ralstonia solanacearum of tomato plants[J]. Microorganisms, 2020, 8(3): 351.
    [21] BOUKAEW S, CHUENCHIT S, PETCHARAT V. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper[J]. BioControl, 2011, 56(3): 365-374.
    [22] WEI Z, YANG XM, YIN SX, SHEN QR, RAN W, XU YC. Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field[J]. Applied Soil Ecology, 2011, 48(2): 152-159.
    [23] SHARMA D, SINGH Y. Characterization of Ralstonia solanacearum isolates using biochemical, cultural, molecular methods and pathogenicity tests[J]. Journal of Pharmacognosy and Phytochemistry, 2019, 8(4): 2884-2889.
    [24] BASHAN Y. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants[J]. Soil Biology and Biochemistry, 1986, 18(3): 297-301.
    [25] AGADAGBA SK, BASH E, CHITTE R, DESHMUKH S, KANEKAR P, CHUTIPONGTANATE S. Isolation of actinomycetes from Soil [J]. Journal of Microbiology Research, 2014, 3(4): 136-140.
    [26] 周欢, 刘昌森, 周辰炎, 范良苗, 唐凡, 胡欣朦, 王佩玉, 徐建明, 杨文杰. 作物根系活力检测方法改进与优化[J]. 江苏农业科学, 2022, 50(9): 191-194. ZHOU H, LIU CS, ZHOU CY, FAN LM, TANG F, HU XM, WANG PY, XU JM, YANG WJ. Improvement and optimization of crop root activity detection method[J]. Jiangsu Agricultural Sciences, 2022, 50(9): 191-194(in Chinese).
    [27] 李朝英, 郑路. 流动分析仪同时快速测定植物全氮、全磷含量的方法改进[J]. 中国土壤与肥料, 2021, 2021(2): 336-342. LI ZY, ZHENG L. Improvement of simultaneous and rapid determination of total nitrogen and total phosphorus in plants by flow analyzer[J]. Soil and Fertilizer Sciences in China, 2021, 2021(2): 336-342(in Chinese).
    [28] GU Y, WEI Z, WANG X, FRIMAN VP, HUANG J, WANG X, MEI X, XU Y, SHEN Q, JOUSSET A. Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile[J]. Biology and Fertility of Soils, 2016, 52(7): 997-1005.
    [29] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10(10): 996-998.
    [30] EDGAR RC. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing[J]. bioRxiv, 2016, DOI: 10.1101/081257.
    [31] WANG Q, GARRITY GM, TIEDJE JM, COLE JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy[J]. Applied and Environmental Microbiology, 2007, 73(16): 5261-5267.
    [32] PARKS DH, TYSON GW, HUGENHOLTZ P, BEIKO RG. STAMP: statistical analysis of taxonomic and functional profiles[J]. Bioinformatics, 2014, 30(21): 3123-3124.
    [33] 何伟, 罗文芳, 周军辉, 许建军, 孙晓军贝莱斯芽孢杆菌JTB8-2对加工番茄促生作用及其安全性评价[J]. 新疆农业科学, 2022, 59(5): 1260-1269. HE W, LUO WF, ZHOU JH, XU JJ, SUN XX. Growth promoting effect and safety evaluation of Bacillus velezensis JTB8-2 on processed tomato[J]. Xinjiang Agricultural Sciences, 2022, 59(5): 1260-1269(in Chinese).
    [34] 杨威, 赵英男, 张敏硕, 毛晓曦, 李翔宇, 郭艳杰, 陶晡, 马理, 刘文菊, 李博文. 温室番茄施用菌剂的促生防病效应[J]. 河北农业大学学报, 2022, 45(4): 57-63. YANG W, ZHAO YN, ZHANG MS, MAO XX, LI XY, GUO YJ, TAO B, MA L, LIU WJ, LI BW. Effects of microbial agents on growth promotion and disease prevention in greenhouse tomato[J]. Journal of Agricultural University of Hebei, 2022, 45(4): 57-63(in Chinese).
    [35] DOBBELAERE S, VANDERLEYDEN J, OKON Y. Plant growth-promoting effects of diazotrophs in the rhizosphere[J]. Critical Reviews in Plant Sciences, 2003, 22(2): 107-149.
    [36] 周晓冬, 常义军, 吴洪生, 张富存, 朱红霞. 甘蓝型油菜开花期SPAD值、叶绿素含量与氮素含量叶位分布特点及其相互关系[J]. 土壤, 2011, 43(1): 148-151. ZHOU XD, CHANG YJ, WU HS, ZHANG FC, ZHU HX. Distribution of SPAD value, contents of chlorophyll and nitrogen of different type leaves and their relationship in flower of Brassica napus[J]. Soils, 2011, 43(1): 148-151(in Chinese).
    [37] GÓMEZ C, OLANO C, PALOMINO-SCHÄTZLEIN M, PINEDA-LUCENA A, CARBAJO RJ, BRANA AF, MéNDEZ C, SALAS JA. Novel compounds produced by Streptomyces lydicus NRRL 2433 engineered mutants altered in the biosynthesis of streptolydigin[J]. The Journal of Antibiotics, 2012, 65(7): 341-348.
    [38] 隋勤, 刘伟成, 卢彩鸽, 刘霆, 裘季燕, 刘学敏. 利迪链霉菌A02抗真菌活性产物的分离和结构鉴定[J]. 生物工程学报, 2009, 25(6): 840-846. SUI Q, LIU WC, LU CG, LIU T, QIU JY, LIU XM. Extraction and structural identification of the antifungal metabolite of Streptomyces lydicus A02[J]. Chinese Journal of Biotechnology, 2009, 25(6): 840-846(in Chinese).
    [39] TAKEUCHI M, INUKAI M, ENOKITA R, IWADO S, TAKAHASHI S, ARAI M. Malioxamycin, a new antibiotic with spheroplast-forming activity. I. Producing organism, fermentation, isolation and characterization[J]. The Journal of Antibiotics, 1980, 33(11): 1213-1219.
    [40] MAHADEVAN B, CRAWFORD DL. Properties of the chitinase of the antifungal biocontrol agent Streptomyces lydicus WYEC108[J]. Enzyme and Microbial Technology, 1997, 20(7): 489-493.
    [41] 纪程, 孙玉香, 孟圆, 刘耀斌, 徐聪, 张永春, 谷益安, 汪吉东. 稻麦轮作体系长期秸秆还田对土壤真菌群落结构及秸秆降解潜力的影响[J]. 农业环境科学学报, 2022, 41(4): 819-825. JI C, SUN YX, MENG Y, LIU YB, XU C, ZHANG YC, GU YA, WANG JD. Effects of long-term straw incorporation on soil fungal community structure and straw decomposition potential in a rice-wheat rotation system[J]. Journal of Agro-Environment Science, 2022, 41(4): 819-825(in Chinese).
    [42] WEI Z, GU YA, FRIMAN VP, KOWALCHUK GA, XU YC, SHEN QR, JOUSSET A. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9): eaaw0759.
    [43] PEREZ-JARAMILLO JE, MENDES R, RAAIJMAKERS JM. Impact of plant domestication on rhizosphere microbiome assembly and functions[J]. Plant Molecular Biology, 2016, 90(6): 635-644.
    [44] 张杨, 王甜甜, 孙玉涵, 胡官墨, 李荣, 俞萍, 沈其荣. 西瓜根际促生菌筛选及生物育苗基质研制[J]. 土壤学报, 2017, 54(3): 703-712. ZHANG Y, WANG TT, SUN YH, HU GM, LI R, YU P, SHEN QR. Screening of plant growth-promoting rhizobacteria from watermelon and development of bio-nursery substrates[J]. Acta Pedologica Sinica, 2017, 54(3): 703-712(in Chinese).
    [45] 沈宗专, 黄炎, 操一凡, 王东升, 刘红军, 李荣, 沈其荣. 健康与罹患青枯病的番茄土壤细菌群落特征比较[J]. 土壤, 2021, 53(1): 5-12. SHEN ZZ, HUANG Y, CAO YF, WANG DS, LIU HJ, LI R, SHEN QR. Comparison of bacterial communities in bulk and rhizosphere soils of healthy and diseased tomato infected by bacterial wilt[J]. Soils, 2021, 53(1): 5-12(in Chinese).
    [46] GU Y, DONG K, GEISEN S, YANG W, YAN Y, GU D, LIU N, BORISJUK N, LUO Y, FRIMAN VP. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion[J]. Plant and Soil, 2020, 452(1): 105-117.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Zhidan, HUANG Qi, LIN Gui, CHEN Hao, XUE Jian, LEI Peng, WANG Rui, LI Sha, XU Hong, GU Yian. Effects of Streptomyces lydicus M01 on growth, bacterial wilt incidence, and rhizosphere bacterial community composition of tomatoes[J]. Microbiology China, 2023, 50(6): 2508-2518

Copy
Share
Article Metrics
  • Abstract:470
  • PDF: 1025
  • HTML: 1088
  • Cited by: 0
History
  • Received:September 03,2022
  • Adopted:November 03,2022
  • Online: June 05,2023
  • Published: June 25,2023
Article QR Code