Isolation and degradation characterization of C24MT1, a highly effective long-chain alkane-degrading bacterium
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [61]
  • | | | |
  • Comments
    Abstract:

    [Background] Petroleum is known as liquid gold. While creating a great social value, the utilization of petroleum for industrial production causes serious pollution to the environment. Microbial remediation is one of the effective approaches to control oil pollution, which has the advantages of low cost, high efficiency, and no secondary pollution. [Objective] To isolate and study the degradation characteristics and microbial remediation potential of highly efficient n-tetracosane-degrading strain from the oil-contaminated soil. [Methods] The strain was identified by morphological observation and 16S rRNA gene sequencing. Gas chromatography was employed to examine the n-tetracosane degradation effect of the strain. Further, we employed gas chromatography-mass spectrometry (GC-MS) to identify the degradation intermediates for predicting the potential metabolic pathway. [Results] Strain C24MT1 was identified as Acinetobacter sp., which was highly capable of degrading n-tetracosane. The optimum degradation conditions of the strain were 30 °C, pH 9.0, and salinity of 2 g/L, under which the degradation rate of 9 g/L n-tetracosane was 86.63%. The strain grew well (OD600=0.39) in strong alkaline environment (pH 11) and maintained high alkane degradation rate (75.38%), demonstrating strong tolerance to extreme environment. According to the degradation intermediates, we predicted that the metabolic pathways of n-tetracosane in the strain might include terminal oxidation and subterminal oxidation. [Conclusion] Acinetobacter sp. C24MT1 had excellent environmental adaptability and alkane-degrading ability, demonstrating great application prospects in the development of microbial inoculants and the remediation of petroleum-contaminated soil. This study provides excellent bacterial resources for the remediation of soil contaminated by high-concentration petroleum in saline-alkali areas and enriches the bacterial resource for the biodegradation of petroleum hydrocarbons.

    Reference
    [1] ORISAKWE OE. Crude oil and public health issues in Niger Delta, Nigeria: much ado about the inevitable[J]. Environmental Research, 2021, 194: 110725.
    [2] SHAW OM, SAWYER GM, HURST RD, DINNAN H, MARTELL S. Different immune and functional effects of urban dust and diesel particulate matter inhalation in a mouse model of acute air pollution exposure[J]. Immunology & Cell Biology, 2021, 99(4): 419-427.
    [3] BRANDT EB, BOLCAS PE, RUFF BP, KHURANA HERSHEY GK. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity[J]. Allergy, 2020, 75(9): 2254-2266.
    [4] LEWIS AC, CARSLAW DC, KELLY FJ. Diesel pollution long under-reported[J]. Nature, 2015, 526(7572): 195.
    [5] ZHANG T, LIU YY, ZHONG S, ZHANG LS. AOPs-based remediation of petroleum hydrocarbons- contaminated soils: efficiency, influencing factors and environmental impacts[J]. Chemosphere, 2020, 246: 125726.
    [6] THOMAS CL, JANSEN B, van LOON EE, WIESENBERG GLB. Transformation of n-alkanes from plant to soil: a review[J]. SOIL, 2021, 7(2): 785-809.
    [7] LI L, XU JL, WANG YH, ZhANG ZN, YE Y. Efficient cyclic oxidation of macro long-chain alkanes in soil using Fenton oxidation with recyclable Fe[J]. Journal of Hazardous Materials, 2021, 417: 126026.
    [8] SHUKLA S, KHAN R, BHATTACHARYA P, DEVANESAN S, AlSALHI MS. Concentration, source apportionment and potential carcinogenic risks of polycyclic aromatic hydrocarbons (PAHs) in roadside soils[J]. Chemosphere, 2022, 292: 133413.
    [9] LI J, XU Y, SONG QW, YANG J, XIE L, YU SH, ZHENG L. Polycyclic aromatic hydrocarbon and n-alkane pollution characteristics and structural and functional perturbations to the microbial community: a case-study of historically petroleum-contaminated soil[J]. Environmental Science and Pollution Research, 2021, 28(9): 10589-10602.
    [10] HALSE K, SOLHEIM E, NORDSTOGA K. Pathological hepatic accumulation of long-chain n-alkanes (“paraffin liver”) in cows (Harbitz and Fölling, 1940). An overlooked discovery. Description of lesions and identification of alkanes[J]. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 1993, 101(6): 430-436.
    [11] AGHADADASHI V, MEHDINIA A, MOLAEI S. Origin, toxicological and narcotic potential of sedimentary PAHs and remarkable even/odd n-alkane predominance in Bushehr Peninsula, the Persian Gulf[J]. Marine Pollution Bulletin, 2017, 114(1): 494-504.
    [12] CHOI B, LEE S, JHO EH. Removal of TPH, UCM, PAHs, and Alk-PAHs in oil-contaminated soil by thermal desorption[J].Applied Biological Chemistry, 2020, 63(1): 1-6.
    [13] ZUZOLO D, GUARINO C, TARTAGLIA M, SCIARRILLO R. Plant-soil-microbiota combination for the removal of total petroleum hydrocarbons (TPH): an in-field experiment[J]. Frontiers in Microbiology, 2021, 11: 621581.
    [14] RONG LG, ZHENG XH, OBA BT, SHEN CB, WANG XX, WANG H, LUO Q, SUN LN. Activating soil microbial community using Bacillus and rhamnolipid to remediate TPH contaminated soil[J]. Chemosphere, 2021, 275: 130062.
    [15] MICLE V, SUR IM. Experimental investigation of a pilot-scale concerning ex-situ bioremediation of petroleum hydrocarbons contaminated soils[J]. Sustainability, 2021, 13(15): 8165.
    [16] AGARRY SE, OWABOR CN, YUSUF RO. Bioremediation of soil artificially contaminated with petroleum hydrocarbon oil mixtures: evaluation of the use of animal manure and chemical fertilizer[J]. Bioremediation Journal, 2010, 14(4): 189-195.
    [17] PANASIA G, PHILIPP B. LaoABCR, a novel system for oxidation of long-chain alcohols derived from SDS and alkane degradation in Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2018, 84(13): e00626-e00618.
    [18] LIU J, ZHAO B, LAN Y, MA T. Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1 mutants based on their alkane metabolism[J]. Bioresource Technology, 2021, 327: 124787.
    [19] CHAUDHARY DK, BAJAGAIN R, JEONG SW, KIM J. Biodegradation of diesel oil and n-alkanes (C18, C20, and C22) by a novel strain Acinetobacter sp. K-6 in unsaturated soil[J]. Environmental Engineering Research, 2020, 25(3): 290-298.
    [20] WANG XT, LIU B, LI XZ, LIN W, LI DA, DONG H, WANG L. Biosurfactants produced by novel facultative- halophilic Bacillus sp. XT-2 with biodegradation of long chain n-alkane and the application for enhancing waxy oil recovery[J]. Energy, 2022, 240: 122802.
    [21] PARK HA, CHOI KY. α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152[J]. Biochemical Engineering Journal, 2020, 156: 107524.
    [22] XIANG W, LIANG Y, HONG S, WANG G, YOU J, XUE YF, MA YH. Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain[J]. Archives of Microbiology, 2022, 204(5): 259.
    [23] LIU H, GAO H, WU ML, MA C, WU JL, YE XQ. Distribution characteristics of bacterial communities and hydrocarbon degradation dynamics during the remediation of petroleum-contaminated soil by enhancing moisture content[J].Microbial Ecology, 2020, 80(1): 202-211.
    [24] SARKAR J, KAZY SK, GUPTA A, DUTTA A, MOHAPATRA B, ROY A, BERA P, MITRA A, SAR P. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge[J]. Frontiers in Microbiology, 2016, 7: 1407.
    [25] 李恒昌, 丁明珠. 石油烃生物降解过程的研究进展[J]. 生物工程学报, 2021, 37(8): 2765-2778. LI HC, DING MZ. Advances in biodegradation of petroleum hydrocarbons[J]. Chinese Journal of Biotechnology, 2021, 37(8): 2765-2778(in Chinese).
    [26] 陈丽华, 孙万虹, 李海玲, 杨琴, 张璇. 石油降解菌对石油烃中不同组分的降解及演化特征研究[J]. 环境科学学报, 2016, 36(1): 124-133. CHEN LH, SUN WH, LI HL, YANG Q, ZHANG X. Biological degradation and transformation characteristics of different components in petroleum hydrocarbon by oil-degradation bacteria[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 124-133(in Chinese).
    [27] KONG WN, ZHAO C, GAO XW, WANG LP, TIAN QQ, LIU Y, XUE SW, HAN Z, CHEN FL, WANG SW. Characterization and transcriptome analysis of a long-chain n-alkane-degrading strain Acinetobacter pittii SW-1[J]. International Journal of Environmental Research and Public Health, 2021, 18(12): 6365.
    [28] WU ML. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil[J]. Chemosphere, 2019, 237: 124456.
    [29] GENG PX, MA AZ, WEI XX, CHEN XK, YIN J, HU FT, ZHUANG XL, SONG MY, ZHUANG GQ. Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons[J]. Environmental Pollution (Barking, Essex: 1987), 2022, 307: 119531.
    [30] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001 DONG XZ, CAI MY. Common Bacterial System Identification Manual[M]. Beijing: Science Press, 2001(in Chinese).
    [31] LIU H, XU J, LIANG RB, LIU JH. Characterization of the medium- and long-chain n-alkanes degrading Pseudomonas aeruginosa strain SJTD-1 and its alkane hydroxylase genes[J]. PLoS One, 2014, 9(8): e105506.
    [32] 李志琳, 解宇峰, 吴杰, 徐佳迎, 王珏, 蒋静艳. 一株高效柴油降解菌Serratia sp. J-3的筛选、鉴定和降解特性[J]. 南京农业大学学报, 2019, 42(6): 1098-1107. LI ZL, XIE YF, WU J, XU JY, WANG J, JIANG JY. Isolation and identification of a high efficiency diesel oil degrading strain Serratia sp. J-3 and its degradation characteristics[J]. Journal of Nanjing Agricultural University, 2019, 42(6): 1098-1107(in Chinese).
    [33] 王兴龙, 颜家保, 胡杰, 鲍彦舟. 柴油污染土壤烷烃降解菌的筛选及降解特性研究[J]. 现代化工, 2022, 42(2): 163-166. WANG XL, YAN JB, HU J, BAO YZ. Screening and degradation characteristics of bacteria for degrading alkane in diesel contaminated soil[J]. Modern Chemical Industry, 2022, 42(2): 163-166(in Chinese).
    [34] 钟磊, 卿晋武, 陈红云, 栗高源, 陈冠益, 孙于茹, 李金磊, 宋英今, 颜蓓蓓. 微生物修复石油烃土壤污染技术研究进展[J]. 生物工程学报, 2021, 37(10): 3636-3652. ZHONG L, QING JW, CHEN HY, LI GY, CHEN GY, SUN YR, LI JL, SONG YJ, YAN BB. Advances in bioremediation of hydrocarbon-contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3636-3652(in Chinese).
    [35] 田秀梅, 王晓丽, 彭士涛, 赵淑伟, 邱滨滨. 一株高效原油降解不动杆菌的筛选及降解特性分析[J]. 环境工程, 2019, 37(6): 165-169, 95. TIAN XM, WANG XL, PENG ST, ZHAO SW, QIU BB. Screening and degradation characteristics of Acinetobacter degrading crude oil efficiently[J]. Environmental Engineering, 2019, 37(6): 165-169, 95(in Chinese).
    [36] 张腾飞, 黄玉杰, 王磊磊, 张闻, 季蕾, 王加宁. 正十二烷降解菌株的筛选及降解特性研究[J]. 环境科学与技术, 2021, 44(S2): 238-244. ZHANG TF, HUANG YJ, WANG LL, ZHANG W, JI L, WANG JN. Screening of n-dodecane degrading strain and research on characteristics[J]. Environmental Science & Technology, 2021, 44(S2): 238-244(in Chinese).
    [37] 李西燕, 张旭, 朱明龙, 吴炜进, 邱永秋, 刘浩, 谭文松. 柴油降解菌的筛选、菌群构建及其对柴油和十五烷的降解机理[J]. 环境工程学报, 2019, 13(12): 2945-2953. LI XY, ZHANG X, ZHU ML, WU WJ, QIU YQ, LIU H, TAN WS. Screening and community construction of diesel oil degrading bacteria and their degradation mechanism of diesel oil and pentadecane[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2945-2953(in Chinese).
    [38] 王之语, 原陇苗, 刘艳红, 马荣, 吴应琴. 高效耐盐碱石油烃降解菌筛选及降解特性研究[J]. 沉积学报, 2022, 40(3): 849-860. WANG ZY, YUAN LM, LIU YH, MA R, WU YQ. Screening and degradation characteristics of high efficiency saline alkali-resistant petroleum hydrocarbon degrading bacteria[J]. Acta Sedimentologica Sinica, 2022, 40(3): 849-860(in Chinese).
    [39] 张海荣, 唐景春, 孙克静, 张清敏. 耐盐碱石油烃降解菌的筛选、鉴定及其耐盐碱性研究[J]. 生物技术通报, 2015, 31(1): 151-159. ZHANG HR, TANG JC, SUN KJ, ZHANG QM. Isolation and identification of saline-alkaline tolerant hydrocarbondegrading strains and study on their saline-alkaline tolerant characteristics[J]. Biotechnology Bulletin, 2015, 31(1): 151-159(in Chinese).
    [40] 樊黎黎, 徐兴健, 韩雪容, 李海彦, 王娜, 冀伟, 于洪文. 莫莫格湿地石油污染土壤中耐盐碱石油烃降解细菌的降解特性研究[J]. 土壤与作物, 2019, 8(2): 195-204. FAN LL, XU XJ, HAN XR, LI HY, WANG N, JI W, YU HW. Characteristics of saline-alkali-tolerant and petroleum hydrocarbon-degrading bacteria isolated from petroleum oil-polluted soil in Momoge wetland[J]. Soils and Crops, 2019, 8(2): 195-204(in Chinese).
    [41] 周旭华, 刘鹏程, 王伟, 丁静, 苏悦. 一株耐盐吡啶降解菌的分离及降解特性研究[J]. 环境污染与防治, 2021, 43(10): 1269-1273. ZHOU XH, LIU PC, WANG W, DING J, SU Y. Isolation and degradation characteristics of a halotolerant pyridine degrading bacterial strain[J]. Environmental Pollution & Control, 2021, 43(10): 1269-1273(in Chinese).
    [42] 李凤娟, 徐菲, 李小龙, 李琦, 曹保久. 高盐度废水处理技术研究进展[J]. 环境科学与管理, 2014, 39(2): 72-75. LI FJ, XU F, LI XL, LI Q, CAO BJ. Research on treatment of high salinity wastewater[J]. Environmental Science and Management, 2014, 39(2): 72-75(in Chinese).
    [43] 张浩, 刘玉香, 呼婷婷, 赵晶. 一株苯胺降解菌的分离及其降解特性[J]. 环境工程学报, 2015, 9(12): 6154-6160. ZHANG H, LIU YX, HU TT, ZHAO J. Isolation and characterization of an aniline-degrading bacterium[J]. Chinese Journal of Environmental Engineering, 2015, 9(12): 6154-6160(in Chinese).
    [44] 陆长鸣, 李想, 徐明恺, 李新宇, 李旭, 谷舞, 郭秋翠, 张惠文. 一株高效广谱莠去津降解菌SB5的生长和降解特性[J]. 应用生态学报, 2022, 33(1): 229-238. LU CM, LI X, XU MK, LI XY, LI X, GU W, GUO QC, ZHANG HW. Growth and degradation characteristics of an efficient and broad-spectrum atrazine-degrading strain SB5[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 229-238(in Chinese).
    [45] 李兵, 张博. 一株长链烷烃降解菌LZ02的筛选及其降解特性[J]. 江西农业大学学报, 2017, 39(4): 780-784, 825. LI B, ZHANG B. Screening of a long-chain alkane-degrading bacterium LZ02 and its degradation characteristics[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(4): 780-784, 825(in Chinese).
    [46] 朱杰, 阮志勇, 董卫卫, 郭翔, 孔德龙, 张琪, 赵述淼, 张伟. 一株高效烷烃降解菌Acinetobacter sp. LAM1007的分离鉴定及降解特性[J]. 微生物学通报, 2017, 44(7): 1535-1546. ZHU J, RUAN ZY, DONG WW, GUO X, KONG DL, ZHANG Q, ZHAO SM, ZHANG W. Isolation, identification and degradation characterization of an alkane-degrading Acinetobacter sp. LAM1007[J]. Microbiology China, 2017, 44(7): 1535-1546(in Chinese).
    [47] 甄丽莎, 谷洁, 胡婷, 刘晨, 贾凤安, 吕睿. 石油烃类污染物降解动力学和微生物群落多样性分析[J]. 农业工程学报, 2015, 31(15): 231-238. ZHEN LS, GU J, HU T, LIU C, JIA FA, LÜ R. Kinetics of petroleum hydrocarbon degradation in soil and diversity of microbial community during composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 231-238(in Chinese).
    [48] ABIOYE PO, AZIZ AA, AGAMUTHU P. Enhanced biodegradation of used engine oil in soil amended with organic wastes[J]. Water, Air, & Soil Pollution, 2010, 209(1): 173-179.
    [49] ROJO F. Degradation of alkanes by bacteria[J]. Environmental Microbiology, 2009, 11(10): 2477-2490.
    [50] SUN JQ, XU L, LIU XY, ZHAO GF, CAI H, NIE Y, WU XL. Functional genetic diversity and culturability of petroleum-degrading bacteria isolated from oil-contaminated soils[J]. Frontiers in Microbiology, 2018, 9: 1332.
    [51] 史可, 郭晨蕾, 马晓丹, 梁斌, 王爱杰. 一株氯霉素降解细菌的分离鉴定与代谢特性研究[J]. 生物工程学报, 2021, 37(10): 3653-3662. SHI K, GUO CL, MA XD, LIANG B, WANG AJ. Isolation, identification and characterization of a chloramphenicol-degrading bacterium[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3653-3662(in Chinese).
    [52] 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12):1-13. NIU HY, SHU Q, YANG HJ, YAN ZY, TAN J. Isolation, degradation characteristics and metabolic pathway of an efficient sodium dodecyl sulfate-degrading bacterium[J]. Biotechnology Bulletin, 2022, 38(12):1-13(in Chinese).
    [53] 杨海燕. 一株红球菌(Rhodococcus sp. strain p52)对石油污染物的降解研究[D]. 济南: 山东大学硕士学位论文, 2014. YANG HY. Degradation of petroleum pollutants by Rhodococcus sp. strain p52[D]. Jinan: Master’s Thesis of Shandong University, 2014(in Chinese).
    [54] 吴慧君, 宋权威, 郑瑾, 于文赫, 张坤峰, 林双君, 梁如冰. 微生物降解石油烃的功能基因研究进展[J]. 微生物学通报, 2020, 47(10): 3355-3368. WU HJ, SONG QW, ZHENG J, YU WH, ZHANG KF, LIN SJ, LIANG RB. Function genes in microorganisms capable of degrading petroleum hydrocarbon[J]. Microbiology China, 2020, 47(10): 3355-3368(in Chinese).
    [55] TANI A, ISHIGE T, SAKAI Y, KATO N. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M-1[J]. Journal of Bacteriology, 2001, 183(5): 1819-1823.
    [56] SCHNEIKER S, dos SANTOS VAM, BARTELS D, BEKEL T, BRECHT M, BUHRMESTER J, CHERNIKOVA TN, DENARO R, FERRER M, GERTLER C, GOESMANN A, GOLYSHINA OV, KAMINSKI F, KHACHANE AN, LANG S, LINKE B, McHARDY AC, MEYER F, NECHITAYLO T, PÜHLER A, et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis[J]. Nature Biotechnology, 2006, 24(8): 997-1004.
    [57] MINERDI D, ZGRABLIC I, SADEGHI SJ, GILARDI G. Identification of a novel Baeyer-Villiger monooxygenase from Acinetobacter radioresistens: close relationship to the Mycobacterium tuberculosis prodrug activator EtaA[J]. Microbial Biotechnology, 2012, 5(6): 700-716.
    [58] KOTANI T, KAWASHIMA Y, YURIMOTO H, KATO N, SAKAI Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7[J]. Journal of Bioscience and Bioengineering, 2006, 102(3): 184-192.
    [59] KOTANI T, YURIMOTO H, KATO N, SAKAI Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5[J]. Journal of Bacteriology, 2007, 189(3): 886-893.
    [60] YIN CF, XU Y, LI T, ZHOU NY. Wide distribution of the sad gene cluster for sub-terminal oxidation in alkane utilizers[J]. Environmental Microbiology, 24(12): 6307-6319.
    [61] 范裕昭, 秦晓宇, 聂勇, 吴晓磊, 许子牧. Dietzia菌中铁氧还蛋白及其还原酶在正十六烷降解中的关键作用[J]. 应用与环境生物学报, 2023, 29(1): 1-6. FAN YZ, QIN XY, NIE Y, WU XL, XU ZM. The key role of ferredoxin and ferredoxin reductase in n-hexadecane degradation from Dietzia bacteria[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(1): 1-6(in Chinese).
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

HOU Lijun, ZHAO Leizhen, ZHUANG Yan, JIA Shuyu, CHEN Liwei, CAI Tianming. Isolation and degradation characterization of C24MT1, a highly effective long-chain alkane-degrading bacterium[J]. Microbiology China, 2023, 50(6): 2320-2334

Copy
Share
Article Metrics
  • Abstract:401
  • PDF: 915
  • HTML: 917
  • Cited by: 0
History
  • Received:September 20,2022
  • Adopted:November 05,2022
  • Online: June 05,2023
  • Published: June 25,2023
Article QR Code