Analysis of epiphytic algal mats and the correlation with aquatic environmental factors in Huanglong travertine area, Sichuan
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] In recent years, Huanglong travertine landscape has seen large-scale growth of algal mats with thickness of 3–5 cm, posing a threat to the travertine deposition and affecting the ornamental value of the landscape. [Objective] To dissect the structure of the algal mats and the reasons for the large-scale growth, thereby to control the growth of algae, and to propose management methods. [Methods] The composition of eukaryotic species in different layers of typical epiphytic algal mats in the Huanglong travertine area was analyzed based on PE-250. Their morphology was characterized via the field emission scanning electron microscope, and the correlation between the thickness of algal mats and water environment parameters was examined. [Results] The algal mats were home to about 400 species of eukaryotes, with the dominant algae of Diatomea (mainly Cymbella), Rotifera, and Streptophyta. Non-metric multidimensional scaling (NMDS) analysis and clustering analysis showed that the composition of eukaryotic species in the middle layer of the algal mats was highly similar to that in the lower layer. Diatoms dominated the upper layer, and the middle layer was mainly composed of filamentous algae. For the lower layer, travertine particles were seen in the reticular structure composed of filamentous algae. The thickness of algal mats was mainly in positive correlation with the total nitrogen (TN), total phosphorus (TP), and dissolved oxygen (DO) in the water (p<0.05). [Conclusion] The algal mats boast abundant species in a few phyla. The three layers of the mat are distinct from each other in species composition and microstructure and water eutrophication can explain the rapid growth of algal mats. This study lays a theoretical basis for the management of algal blooms in Huanglong Scenic and Historic Interest Area.

    Reference
    [1] ZHANG JL, WANG HJ, LIU ZH, AN DJ, DREYBRODT W. Spatial-temporal variations of travertine deposition rates and their controlling factors in Huanglong Ravine, China-a world's heritage site[J]. Applied Geochemistry, 2012, 27:211-222.
    [2] 张金流, 王海静, 董立, 赵德猛. 世界遗产:四川黄龙钙华景观退化现象、原因及保护对策分析[J]. 地球学报, 2012, 33(1):111-120. ZHANG JL, WANG HJ, DONG L, ZHAO DM. An analysis of travertine landscape degradation in Huanglong ravine of Sichuan, a world's heritage site, and its causes and protection countermesures[J]. Acta Geoscientica Sinica, 2012, 33(1):111-120(in Chinese).
    [3] TAKEUCHI N, KOHSHIMA S, SEKO K. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier:a granular algal mat growing on the glacier[J]. Arctic, Antarctic, and Alpine Research, 2001, 33(2):115-122.
    [4] RIPPIN M, PICHRTOVÁ M, ARC E, KRANNER I, BECKER B, HOLZINGER A. Metatranscriptomic and metabolite profiling reveals vertical heterogeneity within a Zygnema green algal mat from Svalbard (High Arctic)[J]. Environmental Microbiology, 2019, 21(11):4283-4299.
    [5] ROMANO I, GIORDANO A, LAMA L, NICOLAUS B, GAMBACORTA A. Planococcus rifietensis sp. nov, isolated from algal mat collected from a sulfurous spring in Campania (Italy)[J]. Systematic and Applied Microbiology, 2003, 26(3):357-366.
    [6] ZEDLER J. Salt marsh algal mat composition:spatial and temporal comparisons[J]. Bulletin, Southern California Academy of Sciences, 1982, 81:41-50.
    [7] BOTHWELL M L, SPAULDING S A. KIRKWOOD A E, JACKSON L J, MCCAULEY E. Didymosphenia geminata distribution and bloom formation along the south-eastern slopes of the Canadian Rockies[J]. On Didymosphenia geminata, 2005:22.
    [8] PIKOSZ M, MESSYASZ B, GĄBKA M. Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland[J]. Ecological Indicators, 2017, 74:1-9.
    [9] STANCHEVA R, SHEATH RG, HALL JD. Systematics of the genus zygnema (zygnematophyceae, charophyta) from Californian watersheds1[J]. Journal of Phycology, 2012, 48(2):409-422.
    [10] HOLZINGER A, ALBERT A, AIGNER S, UHL J, SCHMITT-KOPPLIN P, TRUMHOVÁ K, PICHRTOVÁ M. Arctic, antarctic, and temperate green algae Zygnema spp. under UV-B stress:vegetative cells perform better than pre-akinetes[J]. Protoplasma, 2018, 255(4):1239-1252.
    [11] 邓远明. 九-黄景区典型人为与自然源碳氮磷贡献与钙华沉积特征研究[D]. 绵阳:西南科技大学硕士学位论文, 2020. DENG YM. Studies on the contributions of carbon, nitrogen and phosphorus from typical anthropogenic and natural sources and travertine deposition in Jiuzhai and Huanglong scenic area[D]. Mianyang:Masterʼs Thesis of Southwest University of Science and Technology, 2020(in Chinese).
    [12] 魏复盛. 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. WEI FS. Water and waste water monitoring and analysis method[M]. 4th ed. Beijing:China Environment Science Press, 2002(in Chinese).
    [13] 李培京. 扫描电镜生物样品制备与观察[J]. 现代科学仪器, 2008(3):124-125. LI PJ. Preparation and observation of biological sample by scanning electron microscope[J]. Modern Scientific Instruments, 2008(3):124-125(in Chinese).
    [14] LI B, ZHANG XX, GUO F, WU WM, ZHANG T. Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis[J]. Water Research, 2013, 47(13):4207-4216.
    [15] SHANNON CE, WEAVER W. The Mathematical Theory of Communication[M]. Urbana:University of Illinois Press, 1949
    [16] KRUSKAL JB. Nonmetric multidimensional scaling:a numerical method[J]. Psychometrika, 1964, 29(2):115-129.
    [17] 李玉鑑, 徐立业. 不加权算术平均组对方法的改进及应用[J]. 北京工业大学学报, 2007, 33(12):1333-1339. LI YJ, XU LY. Improvement for unweighted pair group method with arithmetic mean and its application[J]. Journal of Beijing University of Technology, 2007, 33(12):1333-1339(in Chinese).
    [18] DEY I, BANERJEE S, BOSE R, PAL R. Spatiotemporal variations in the composition of algal mats in wastewater treatment ponds of tannery industry[J]. Environmental Monitoring and Assessment, 2021, 193(6):359.
    [19] JIMEL M, KVÍDEROVÁ J, ELSTER J. Annual cycle of mat-forming filamentous Alga Tribonem a cf. minus (Stramenopiles, Xanthophyceae) in hydro-terrestrial habitats in the high arctic revealed by multiparameter fluorescent staining[J]. Journal of Phycology, 2021, 57(3):780-796.
    [20] VADEBONCOEUR Y, MOORE MV, STEWART SD, CHANDRA S, ATKINS KS, BARON JS, BOUMA-GREGSON K, BROTHERS S, FRANCOEUR SN, GENZOLI L, HIGGINS SN, HILT S, KATONA LR, KELLY D. OLEKSY IA, OZERSKY T, POWER ME, ROBERTS D, SMITS AP, TIMOSHKIN OLEG, et al. Blue waters, green bottoms:benthic filamentous algal blooms are an emerging threat to clear lakes worldwide[J]. BioScience, 2021, 71(10):1011-1027.
    [21] BIGGS BJF, NIKORA VI, SNELDER TH. Linking scales of flow variability to lotic ecosystem structure and function[J]. River Research and Applications, 2005, 21(2/3):283-298.
    [22] BIGGS BJF, GORING DG, NIKORA VI. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form[J]. Journal of Phycology, 1998, 34(4):598-607.
    [23] PLEW DR, COOPER GG, CALLAGHAN FM. Turbulence-induced forces in a freshwater macrophyte canopy[J]. Water Resources Research, 2008, 44(2):187-197.
    [24] LARNED ST. Nitrogen-versus phosphorus-limited growth and sources of nutrients for coral reef macroalgae[J]. Marine Biology, 1998, 132(3):409-421.
    [25] SUREN AM, SMART GM, SMITH RA, BROWN SLR. Drag coefficients of stream bryophytes:experimental determinations and ecological significance[J]. Freshwater Biology, 2000, 45(3):309-317.
    [26] LARNED ST, PACKMAN AI, PLEW DR, VOPEL K. Interactions between the mat-forming alga Didymosphenia geminataand its hydrodynamic environment[J]. Limnology and Oceanography:Fluids and Environments, 2011, 1(1):4-22.
    [27] EVA C, JÁN M. Bioaccumulation of heavy metals by green algae Cladophora glomerata in a refinery sewage lagoon[J]. Croatica Chemica Acta;, 2001, 74(1):135-145.
    [28] BRICKER SB, LONGSTAFF B, DENNISON W, JONES A, BOICOURT K, WICKS C, WOERNER J. Effects of nutrient enrichment in the nation's estuari, FOUKE BW. Study on characteristics and significances of algal mats travertine in Zhengyancai pool marble dam of Huanglong natural reserve[J]. Carsologica Sinica, 2021, 40(1):105-111(in Chinese).in freshwater ecosystems in Poland[J]. Oceanological and Hydrobiological Studies, 2016, 45(2):202-215.
    [30] KLEINTEICH J, GOLUBIC S, PESSI IS, VELÁZQUEZ D, STORME JY, DARCHAMBEAU F, BORGES AV, COMPÈRE P, RADTKE G, LEE SJ, JAVAUX EJ, WILMOTTE A. Cyanobacterial contribution to travertine deposition in the hoyoux river system, Belgium[J]. Microbial Ecology, 2017, 74(1):33-53.
    [31] SHIRAISHI F, MORIKAWA A, KUROSHIMA K, AMEKAWA S, YU TL, SHEN CC, KAKIZAKI Y, KANO A, ASADA J, BAHNIUK AM. Genesis and diagenesis of travertine, futamata hot spring, Japan[J]. Sedimentary Geology, 2020, 405:105706.
    [32] VALERIANI F, CROGNALE S, PROTANO C, GIANFRANCESCHI G, ORSINI M, VITALI M, SPICA VR. Metagenomic analysis of bacterial community in a travertine depositing hot spring[J]. The New Microbiologica, 2018, 41(2):126-135.
    [33] SASAKI M, TAKAGI A, SASAKI D, NAKAMURA A, ASAYAMA M. Characteristics and function of an extracellular polysaccharide from a green alga Parachlorella[J]. Carbohydrate Polymers, 2021, 254:117252.
    [34] KUMAR D, KVÍDEROVÁ J, KAŠTÁNEK P, LUKAVSKÝ J. The green Alga Dictyosphaerium chlorelloides biomass and polysaccharides production determined using cultivation in crossed gradients of temperature and light[J]. Engineering in Life Sciences, 2017, 17(9):1030-1038.
    [35] 王建萍, 李琼芳, 董发勤, 李骐言, 程祥. 3株常见细菌胞外氨基酸对方解石表面性质的影响[J]. 环境科学与技术, 2015, 38(2):1-6. WANG JP, LI QF, DONG FQ, LI QY, CHENG X. Surface properties effect of calcite caused by three common bacterial extracellular amino acids[J]. Environmental Science & Technology, 2015, 38(2):1-6(in Chinese).
    [36] 王龙, LATIF K, RIAZ M, 刘晓晔. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展, 2018, 33(10):1005-1023. WANG L, LATIF K, RIAZ M, LIU XY. The genesis, classification, problems and prospects of microbial carbonates:Implications from the Cambrian carbonate of North China platform[J]. Advances in Earth Science, 2018, 33(10):1005-1023(in Chinese).
    [37] GREER HF, ZHOU WZ, GUO L, CÖLFEN H, DISTASO M. Reversed crystal growth of calcite in naturally occurring travertine crust[J]. Crystals, 2017, 7(2):36.
    [38] JONES B, PENG XT. Hot spring deposits on a cliff face:a case study from Jifei, Yunnan Province, China[J]. Sedimentary Geology, 2014, 302:1-28.
    [39] JONES B, PENG XT. Amorphous calcium carbonate associated with biofilms in hot spring deposits[J]. Sedimentary Geology, 2012, 269/270:58-68.
    [40] JONES B, PENG XT. Mineralogical, crystallographic, and isotopic constraints on the precipitation of aragonite and calcite at Shiqiang and other hot springs in Yunnan Province, China[J]. Sedimentary Geology, 2016, 345:103-125.
    [41] JONES B, RENAUT RW. Modern travertine precipitation at lýsuhóll hot springs, SnÆfellnes, Iceland:Implications for calcite crystal growth[J]. Journal of Sedimentary Research, 2017, 87(11):1121-1142.
    [42] 王海静, 刘再华, 曾成, 刘香玲, 孙海龙, 安德军, 唐淑, 张清明. 四川黄龙沟源头黄龙泉泉水及其下游溪水的水化学变化研究[J]. 地球化学, 2009, 38(3):307-314. WANG HJ, LIU ZH, ZENG C, LIU XL, SUN HL, AN DJ, TANG S, ZHANG QM. Hydrochemical variations of Huanglong Spring and the stream in Huanglong Ravine, Sichuan Province[J]. Geochimica, 2009, 38(3):307-314(in Chinese).
    [43] VERGARA JJ, PEREZ-LLORENS JL, PERALTA G, HERNANDEZ I, NIELL FX. Seasonal variation of photosynthetic performance and light attenuation in ulva canopies from palmones river estuary1[J]. Journal of Phycology, 1997, 33(5):773-779.
    [44] 冯晨旭, 董发勤, 代群威, 霍婷婷, Belzile N. 黄龙钙华纹层石特征与成因分析[J]. 矿物学报, 2019, 39(1):55-63. FENG CX, DONG FQ, DAI QW, HUO TT, BELZILE N. Characteristics and genesis of lamina travertine at Huanglong in Sichuan Province, China[J]. Acta Mineralogica Sinica, 2019, 39(1):55-63(in Chinese).
    [45] 宋韬, 代群威, 李琼芳, 董发勤, 崔杰, 安德军, 罗尧东, Bruce W. Fouke. 黄龙争艳彩池边石坝藻席钙华特性研究及意义[J]. 中国岩溶, 2021, 40(1):105-111. SONG T, DAI QW, LI QF, DONG FQ, CUI J, AN DJ, LUO YD
    Related
    Cited by
Get Citation

ZHAO Xiaoxia, LI Qiongfang, DAI Qunwei, SUN Geng, ZHANG Qiang, CHE Mingxuan, DONG Pengju, REN Yazhen. Analysis of epiphytic algal mats and the correlation with aquatic environmental factors in Huanglong travertine area, Sichuan[J]. Microbiology China, 2023, 50(3): 924-937

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 14,2022
  • Adopted:August 30,2022
  • Online: March 07,2023
  • Published: March 20,2023
Article QR Code