Research progress in microbe-gut-bone axis and osteoporosis
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [65]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Gut microbes, known as the body’s “second gene pool”, play a role in the treatment of osteoporosis. They affect the connection between intestinal tract and bone metabolism through intestinal epithelial barrier, immune system, endocrine system, and intestinal flora metabolites in the gut-bone axis. Novel gut microbiota-targeted therapies such as probiotics, prebiotics, and dietary supplements have been shown to be effective in preventing bone loss. However, their long-term efficacy and safety still need to be further enhanced. Therefore, this paper discusses the main role of the microbe-gut-bone axis in osteoporosis, which is expected to provide new ideas for the treatment of this disease.

    Reference
    [1] 邱贵兴, 裴福兴, 胡侦明, 唐佩福, 薛庆云, 杨惠林, 陶天遵, 赵宇. 中国骨质疏松性骨折诊疗指南:骨质疏松性骨折诊断及治疗原则[J]. 黑龙江科学, 2018, 9(2):85-88, 95. QIU GX, PEI FX, HU ZM, TANG PF, XUE QY, YANG HL, TAO TZ, ZHAO Y. Guide to diagnosis and treatment of osteoporotic fracture in China:osteoporotic fracture diagnosis and treatment principles[J]. Heilongjiang Science, 2018, 9(2):85-88, 95(in Chinese).
    [2] 中华医学会骨质疏松和骨矿盐疾病分会. 中国骨质疏松症流行病学调查及"健康骨骼"专项行动结果发布[J]. 中华骨质疏松和骨矿盐疾病杂志, 2019, 12(4):317-318. Chinese Society of Osteoporosis and Bone Mineral Research. Epidemiological investigation of osteoporosis in China and release of results of "healthy bones" special action[J]. Chinese Journal of Osteoporosis and Bone Mineral Research, 2019, 12(4):317-318(in Chinese).
    [3] QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI J, XU J, LI S, LI D, CAO J, WANG B, LIANG H, ZHENG H, XIE Y, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65.
    [4] LOZUPONE CA, STOMBAUGH JI, GORDON JI, JANSSON JK, KNIGHT R. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415):220-230.
    [5] HERNANDEZ CJ, GUSS JD, LUNA M, GOLDRING SR. Links between the microbiome and bone[J]. Journal of Bone and Mineral Research:the Official Journal of the American Society for Bone and Mineral Research, 2016, 31(9):1638-1646.
    [6] IBÁÑEZ L, ROULEAU M, WAKKACH A, BLIN-WAKKACH C. Gut microbiome and bone[J]. Joint Bone Spine, 2019, 86(1):43-47.
    [7] LU LY, CHEN XX, LIU Y, YU XJ. Gut microbiota and bone metabolism[J]. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(7):e21740.
    [8] TU Y, YANG R, XU X, ZHOU XD. The microbiota-gut-bone axis and bone health[J]. Journal of Leukocyte Biology, 2021, 110(3):525-537.
    [9] 董万涛, 黄凯, 宋敏, 侯红燕, 宋志靖, 周灵通, 刘小钰, 蒋林博. 肠道微生态失衡为骨质疏松症发病的易感因素[J]. 中国骨质疏松杂志, 2018, 24(3):394-398. DONG WT, HUANG K, SONG M, HOU HY, SONG ZJ, ZHOU LT, LIU XY, JIANG LB. The imbalance of gut microecology may be a susceptible factor of osteoporosis[J]. Chinese Journal of Osteoporosis, 2018, 24(3):394-398(in Chinese).
    [10] ULLUWISHEWA D, ANDERSON RC, MCNABB WC, MOUGHAN PJ, WELLS JM, ROY NC. Regulation of tight junction permeability by intestinal bacteria and dietary components[J]. The Journal of Nutrition, 2011, 141(5):769-776.
    [11] MA SC, QIN JH, HAO YQ, SHI Y, FU LJ. Structural and functional changes of gut microbiota in ovariectomized rats and their correlations with altered bone mass[J]. Aging, 2020, 12(11):10736-10753.
    [12] HOU GQ, GUO C, SONG GH, FANG N, FAN WJ, CHEN XD, YUAN L, WANG ZQ. Lipopolysaccharide (LPS) promotes osteoclast differentiation and activation by enhancing the MAPK pathway and COX-2 expression in RAW264.7 cells[J]. International Journal of Molecular Medicine, 2013, 32(2):503-510.
    [13] MINEO H, HARA H, TOMITA F. Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon[J]. Life Sciences, 2001, 69(5):517-526.
    [14] YU JW, CAO GY, YUAN SH, LUO C, YU JF, CAI M. Probiotic supplements and bone health in postmenopausal women:a meta-analysis of randomised controlled trials[J]. BMJ Open, 2021, 11(3):e041393.
    [15] JONES ML, MARTONI CJ, PRAKASH S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D:a post hoc analysis of a randomized controlled trial[J]. The Journal of Clinical Endocrinology & Metabolism, 2013, 98(7):2944-2951.
    [16] CASTANEDA M, STRONG JM, ALABI DA, HERNANDEZ CJ. The gut microbiome and bone strength[J]. Current Osteoporosis Reports, 2020, 18(6):677-683.
    [17] PENG LY, LI ZR, GREEN RS, HOLZMAN IR, LIN J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in caco-2 cell monolayers[J]. The Journal of Nutrition, 2009, 139(9):1619-1625.
    [18] WHISNER CM, MARTIN BR, NAKATSU CH, STORY JA, MACDONALD-CLARKE CJ, MCCABE LD, MCCABE GP, WEAVER CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome:a randomized dose-response trial in free-living pubertal females[J]. The Journal of Nutrition, 2016, 146(7):1298-1306.
    [19] LUU M, PAUTZ S, KOHL V, SINGH R, ROMERO R, LUCAS S, HOFMANN J, RAIFER H, VACHHARAJANI N, CARRASCOSA LC, LAMP B, NIST A, STIEWE T, SHAUL Y, ADHIKARY T, ZAISS MM, LAUTH M, STEINHOFF U, VISEKRUNA A. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes[J]. Nature Communications, 2019, 10:760.
    [20] RAHMAN MM, KUKITA A, KUKITA T, SHOBUIKE T, NAKAMURA T, KOHASHI O. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages[J]. Blood, 2003, 101(9):3451-3459.
    [21] TYAGI AM, YU MC, DARBY TM, VACCARO C, LI JY, OWENS JA, HSU E, ADAMS J, WEITZMANN MN, JONES RM, PACIFICI R. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6):1116-1131.e7.
    [22] CZERNIK PJ, GOLONKA RM, CHAKRABORTY S, YEOH BS, ABOKOR AA, SAHA P, YEO JY, MELL B, CHENG X, BAROI S, TIAN Y, PATTERSON AD, JOE B, VIJAY-KUMAR M, LECKA-CZERNIK B. Reconstitution of the host holobiont in germ-free born male rats acutely increases bone growth and affects marrow cellular content[J]. Physiological Genomics, 2021, 53(12):518-533.
    [23] LI JY, YU MC, PAL S, TYAGI AM, DAR H, ADAMS J, WEITZMANN MN, JONES RM, PACIFICI R. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota[J]. The Journal of Clinical Investigation, 2020, 130(4):1767-1781.
    [24] KATONO T, KAWATO T, TANABE N, SUZUKI N, IIDA T, MOROZUMI A, OCHIAI K, MAENO M. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts[J]. Archives of Oral Biology, 2008, 53(10):903-909.
    [25] LUCAS S, OMATA Y, HOFMANN J, BÖTTCHER M, ILJAZOVIC A, SARTER K, ALBRECHT O, SCHULZ O, KRISHNACOUMAR B, KRÖNKE G, HERRMANN M, MOUGIAKAKOS D, STROWIG T, SCHETT G, ZAISS MM. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss[J]. Nature Communications, 2018, 9:55.
    [26] ENZO I, CLAUDIA S, MARIABEATRICE P, FLORIANA G, GIUSEPPE L, ALFREDO DL. Intestinal microbial metabolism of phosphatidylcholine:a novel insight in the cardiovascular risk scenario[J]. Hepatobiliary Surgery and Nutrition, 2015, 4(4):289-292.
    [27] LIN H, LIU TF, LI X, GAO X, WU TR, LI P. The role of gut microbiota metabolite trimethylamine N-oxide in functional impairment of bone marrow mesenchymal stem cells in osteoporosis disease[J]. Annals of Translational Medicine, 2020, 8(16):1009.
    [28] LI L, CHEN BB, ZHU RY, LI R, TIAN YM, LIU CY, JIA QQ, WANG LL, TANG JF, ZHAO DD, MO FF, LIU Y, LI Y, OREKHOV AN, BRÖMME D, ZHANG DW, GAO SH. Fructus Ligustri Lucidi preserves bone quality through the regulation of gut microbiota diversity, oxidative stress, TMAO and Sirt6 levels in aging mice[J]. Aging, 2019, 11(21):9348-9368.
    [29] ZHU WF, GREGORY JC, ORG E, BUFFA JA, GUPTA N, WANG ZN, LI L, FU XM, WU YP, MEHRABIAN M, SARTOR RB, MCINTYRE TM, SILVERSTEIN RL, TANG WHW, DIDONATO JA, BROWN JM, LUSIS AJ, HAZEN SL. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk[J]. Cell, 2016, 165(1):111-124.
    [30] YADAV VK, OURY F, SUDA NN, LIU ZW, GAO XB, CONFAVREUX C, KLEMENHAGEN KC, TANAKA KF, GINGRICH JA, GUO XE, TECOTT LH, MANN JJ, HEN R, HORVATH TL, KARSENTY G. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure[J]. Cell, 2009, 138(5):976-989.
    [31] DUCY P, KARSENTY G. The two faces of serotonin in bone biology[J]. The Journal of Cell Biology, 2010, 191(1):7-13.
    [32] ROSHCHINA VV. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells[M]. Microbial Endocrinology:InterKingdom Signaling in Infectious Disease and Health. Cham:Springer International Publishing, 2016:25-77.
    [33] YANO JM, YU K, DONALDSON GP, SHASTRI GG, ANN P, MA L, NAGLER CR, ISMAGILOV RF, MAZMANIAN SK, HSIAO EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161(2):264-276.
    [34] YADAV VK, RYU JH, SUDA NN, TANAKA KF, GINGRICH JA, SCHÜTZ G, GLORIEUX FH, CHIANG CY, ZAJAC JD, INSOGNA KL, MANN JJ, HEN R, DUCY P, KARSENTY G. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum[J]. Cell, 2008, 135(5):825-837.
    [35] QI YP, JIANG CT, CHENG J, KRAUSZ KW, LI TG, FERRELL JM, GONZALEZ FJ, CHIANG JYL. Bile acid signaling in lipid metabolism:metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice[J]. Biochimica et Biophysica Acta, 2015, 1851(1):19-29.
    [36] SATO H, MACCHIARULO A, THOMAS C, GIOIELLO A, UNE M, HOFMANN AF, SALADIN R, SCHOONJANS K, PELLICCIARI R, AUWERX J. Novel potent and selective bile acid derivatives as TGR5 agonists:biological screening, structure-activity relationships, and molecular modeling studies[J]. Journal of Medicinal Chemistry, 2008, 51(6):1831-1841.
    [37] MACZEWSKY J, KAISER J, GRESCH A, GERST F, DÜFER M, KRIPPEIT-DREWS P, DREWS G. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway[J]. Diabetes, 2019, 68(2):324-336.
    [38] ZHAO CH, LIANG J, YANG YQ, YU MX, QU XH. The impact of glucagon-like peptide-1 on bone metabolism and its possible mechanisms[J]. Frontiers in Endocrinology, 2017, 8:98.
    [39] CERYAK S, BOUSCAREL B, MALAVOLTI M, FROMM H. Extrahepatic deposition and cytotoxicity of lithocholic acid:studies in two hamster models of hepatic failure and in cultured human fibroblasts[J]. Hepatology, 1998, 27(2):546-556.
    [40] RUIZ-GASPÃ S, GUAÑABENS N, ENJUANES A, PERIS P, MARTINEZ-FERRER A, de OSABA MJM, GONZALEZ B, ALVAREZ L, MONEGAL A, COMBALIA A, PARÉS A. Lithocholic acid downregulates vitamin D effects in human osteoblasts[J]. European Journal of Clinical Investigation, 2010, 40(1):25-34.
    [41] HAO ML, WANG GY, ZUO XQ, QU CJ, YAO BC, WANG DL. Gut microbiota:an overlooked factor that plays a significant role in osteoporosis[J]. The Journal of International Medical Research, 2019, 47(9):4095-4103.
    [42] ULUÇKAN Ö, JIMENEZ M, KARBACH S, JESCHKE A, GRAÑA O, KELLER J, BUSSE B, CROXFORD A L, FINZEL S, KOENDERS M, van den BERG W, SCHINKE T, AMLING M, WAISMAN A, SCHETT G, WAGNER EF. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of Wnt signaling in osteoblasts[J]. Science Translational Medicine, 2016, 8(330):330ra37.
    [43] TAKAYANAGI H, KIM S, KOGA T, NISHINA H, ISSHIKI M, YOSHIDA H, SAIURA A, ISOBE M, YOKOCHI T, INOUE JI, WAGNER EF, MAK TW, KODAMA T, TANIGUCHI T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts[J]. Developmental Cell, 2002, 3(6):889-901.
    [44] DAR HY, SHUKLA P, MISHRA PK, ANUPAM R, MONDAL RK, TOMAR GB, SHARMA V, SRIVASTAVA RK. Lactobacillus acidophilus inhibits bone loss and increases bone heterogeneity in osteoporotic mice via modulating Treg-Th17 cell balance[J]. Bone Reports, 2018, 8:46-56.
    [45] ROUND JL, MAZMANIAN SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(27):12204-12209.
    [46] ATARASHI K, TANOUE T, OSHIMA K, SUDA W, NAGANO Y, NISHIKAWA H, FUKUDA S, SAITO T, NARUSHIMA S, HASE K, KIM S, FRITZ JV, WILMES P, UEHA S, MATSUSHIMA K, OHNO H, OLLE B, SAKAGUCHI S, TANIGUCHI T, MORITA H, HATTORI M, HONDA K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500(7461):232-236.
    [47] ATARASHI K, TANOUE T, SHIMA T, IMAOKA A, KUWAHARA T, MOMOSE Y, CHENG GH, YAMASAKI S, SAITO T, OHBA Y, TANIGUCHI T, TAKEDA K, HORI S, IVANOV II, UMESAKI Y, ITOH K, HONDA K. Induction of colonic regulatory T cells by indigenous Clostridium species[J]. Science, 2011, 331(6015):337-341.
    [48] DAR HY, PAL S, SHUKLA P, MISHRA PK, TOMAR GB, CHATTOPADHYAY N, SRIVASTAVA RK. Bacillus clausii inhibits bone loss by skewing Treg-Th17 cell equilibrium in postmenopausal osteoporotic mice model[J]. Nutrition:Burbank, Los Angeles County, Calif, 2018, 54:118-128.
    [49] JIA L, TU Y, JIA X, DU Q, ZHENG X, YUAN Q, ZHENG L, ZHOU X, XU X. Probiotics ameliorate alveolar bone loss by regulating gut microbiota[J]. Cell Prolif, 2021, 54(7):e13075.
    [50] RUBINSTEIN MR, WANG XW, LIU W, HAO YJ, CAI GF, HAN YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin[J]. Cell Host & Microbe, 2013, 14(2):195-206.
    [51] WAGNER RD, JOHNSON SJ. Probiotic lactobacillus and estrogen effects on vaginal epithelial gene expression responses to Candida albicans[J]. Journal of Biomedical Science, 2012, 19(1):58.
    [52] DUQUE G, HUANG DC, DION N, MACORITTO M, RIVAS D, LI W, YANG XF, LI JR, LIAN J, MARINO FT, BARRALET J, LASCAU V, DESCHÊNES C, STE-MARIE LG, KREMER R. Interferon-γ plays a role in bone formation in vivo and rescues osteoporosis in ovariectomized mice[J]. Journal of Bone and Mineral Research:the Official Journal of the American Society for Bone and Mineral Research, 2011, 26(7):1472-1483.
    [53] CLARKE G, STILLING RM, KENNEDY PJ, STANTON C, CRYAN JF, DINAN TG. Minireview:gut microbiota:the neglected endocrine organ[J]. Molecular Endocrinology, 2014, 28(8):1221-1238.
    [54] LI JY, CHASSAING B, TYAGI AM, VACCARO C, LUO T, ADAMS J, DARBY TM, WEITZMANN MN, MULLE JG, GEWIRTZ AT, JONES RM, PACIFICI R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics[J]. The Journal of Clinical Investigation, 2016, 126(6):2049-2063.
    [55] KIM SW, PAJEVIC PD, SELIG M, BARRY KJ, YANG JY, SHIN CS, BAEK WY, KIM JE, KRONENBERG HM. Intermittent parathyroid hormone administration converts quiescent lining cells to active osteoblasts[J]. Journal of Bone and Mineral Research:the Official Journal of the American Society for Bone and Mineral Research, 2012, 27(10):2075-2084.
    [56] YU MC, TYAGI AM, LI JY, ADAMS J, DENNING TL, WEITZMANN MN, JONES RM, PACIFICI R. PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells[J]. Nature Communications, 2020, 11:468.
    [57] YAN J, HERZOG JW, TSANG K, BRENNAN CA, BOWER MA, GARRETT WS, SARTOR BR, ALIPRANTIS AO, CHARLES JF. Gut microbiota induce IGF-1 and promote bone formation and growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(47):E7554-E7563.
    [58] OHLSSON C, ENGDAHL C, FÅK F, ANDERSSON A, WINDAHL SH, FARMAN HH, MOVÉRARE-SKRTIC S, ISLANDER U, SJÖGREN K. Probiotics protect mice from ovariectomy-induced cortical bone loss[J]. PLoS One, 2014, 9(3):e92368.
    [59] 高伟华. 乳酸菌对高糖高脂2型糖尿病小鼠糖脂代谢及肠道菌群的影响[D]. 临汾:山西师范大学硕士学位论文, 2018. GAO WH. Effects of Lactobacillus on glucolipids metabolism and intestinal flora in type 2 diabetic mice fed with high-glucose and high-fat diet[D]. Linfen:Master's Thesis of Shanxi Normal University, 2018(in Chinese).
    [60] AMAR J, CHABO C, WAGET A, KLOPP P, VACHOUX C, BERMÚDEZ-HUMARÁN LG, SMIRNOVA N, BERGÉ M, SULPICE T, LAHTINEN S, OUWEHAND A, LANGELLA P, RAUTONEN N, SANSONETTI PJ, BURCELIN R. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes:molecular mechanisms and probiotic treatment[J]. EMBO Molecular Medicine, 2011, 3(9):559-572.
    [61] SCHWARZER M, MAKKI K, STORELLI G, MACHUCA-GAYET I, SRUTKOVA D, HERMANOVA P, MARTINO ME, BALMAND S, HUDCOVIC T, HEDDI A, RIEUSSET J, KOZAKOVA H, VIDAL H, LEULIER F. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition[J]. Science, 2016, 351(6275):854-857.
    [62] AVELLA MA, PLACE A, DU SJ, WILLIAMS E, SILVI S, ZOHAR Y, CARNEVALI O. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems[J]. PLoS One, 2012, 7(9):e45572.
    [63] MOAYYEDI P, SURETTE MG, KIM PT, LIBERTUCCI J, WOLFE M, ONISCHI C, ARMSTRONG D, MARSHALL JK, KASSAM Z, REINISCH W, LEE CH. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial[J]. Gastroenterology, 2015, 149(1):102-109.e6.
    [64] MA SC, WANG N, ZHANG P, WU W, FU LJ. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats[J]. PeerJ, 2021, 9:e12293.
    [65] 李锋, 龚继承, 汪群力, 陈奇, 陆焱. 益生菌对绝经后骨质疏松患者骨代谢的影响[J]. 中国老年学杂志, 2021, 41(11):2356-2359. LI F, GONG JC, WANG QL, CHEN Q, LU Y. Effect of probiotics on bone metabolism in postmenopausal osteoporosis patients[J]. Chinese Journal of Gerontology, 2021, 41(11):2356-2359(in Chinese).
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DONG Wantao, ZHANG Jie, ZHAO Zhangkai, WANG Jianhong, CHANG Rumeng, YUAN Peng. Research progress in microbe-gut-bone axis and osteoporosis[J]. Microbiology China, 2023, 50(2): 719-728

Copy
Share
Article Metrics
  • Abstract:298
  • PDF: 1399
  • HTML: 1341
  • Cited by: 0
History
  • Received:May 19,2022
  • Adopted:August 15,2022
  • Online: February 03,2023
  • Published: February 20,2023
Article QR Code