Research progress on gut microbiota and cognitive impairment in the elderly
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [49]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Cognitive decline, a major characteristic of brain aging in the elderly, is associated with the increasing inflammatory reaction, decreasing antioxidant capacity, the impairment of blood-brain barrier, and the structural change of hippocampus. Increasing studies have demonstrated that the changes of gut microbiota in the aging people are an important factor of cognitive impairment, which have gradually become a research hotspot. Gut microbiota can regulate the cognitive function of the elderly through gut-brain axis. They can affect the memory, emotion, and other cognitive domains of the elderly through the neurotransmitters, vagus nerve, nerve endocrine, and immunomodulation. Moreover, they can influence the cognitive function by regulating the beta-amyloid deposition, lipopolysaccharide levels, and the development and maturation of microglia. We reviewed the recent advances in research on gut microbiota and cognitive functions of the elderly, aiming to provide new ideas for the prevention and rehabilitation of cognitive impairment-related diseases in the elderly.

    Reference
    [1] 曹江翎, 王烨, 钱东福, 杨帆. 老年人群认知障碍影响因素及作用机制[J]. 南京医科大学学报(社会科学版), 2019, 19(2):119-123. CAO JL, WANG Y, QIAN DF, YANG F. Analysis of influencing factors and mechanism of cognitive impairment in elderly population[J]. Journal of Nanjing Medical University (Social Sciences), 2019, 19(2):119-123(in Chinese).
    [2] 蔡俊, 张忠兴. 功能性锻炼结合认知训练对老年轻度认知障碍患者认知功能影响研究[J]. 牡丹江师范学院学报(自然科学版), 2019(2):43-47. CAI J, ZHANG ZX. Effect of functional exercise combined with cognitive training on cognitive function in young and young patients with cognitive impairment[J]. Journal of Mudanjiang Normal University (Natural Sciences Edition), 2019(2):43-47(in Chinese).
    [3] INTEGRATIVE HMP (IHMP) RESEARCH NETWORK CONSORTIUM. The integrative human microbiome project[J]. Nature, 2019, 569(7758):641-648.
    [4] SUN J, XU JX, LING Y, WANG FY, GONG TY, YANG CW, YE SQ, YE KY, WEI DH, SONG ZQ, CHEN DN, LIU JM. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice[J]. Translational Psychiatry, 2019, 9:189.
    [5] PUSHPANATHAN P, MATHEW GS, SELVARAJAN S, SESHADRI KG, SRIKANTH P. Gut microbiota and its mysteries[J]. Indian Journal of Medical Microbiology, 2019, 37(2):268-277.
    [6] SEBASTIÁN DOMINGO JJ, SÁNCHEZ SÁNCHEZ C. From the intestinal flora to the microbiome[J]. Revista Espanola De Enfermedades Digestivas:Organo Oficial De La Sociedad Espanola De Patologia Digestiva, 2018, 110(1):51-56.
    [7] RINNINELLA E, RAOUL P, CINTONI M, FRANCESCHI F, MIGGIANO GAD, GASBARRINI A, MELE MC. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases[J]. Microorganisms, 2019, 7(1):14.
    [8] KATAOKA K. The intestinal microbiota and its role in human health and disease[J]. The Journal of Medical Investigation:JMI, 2016, 63(1/2):27-37.
    [9] SAKWINSKA O, FOATA F, BERGER B, BRÜSSOW H, COMBREMONT S, MERCENIER A, DOGRA S, SOH SE, YEN JK, HEONG GS, LEE YS, YAP F, MEANEY MJ, CHONG YS, GODFREY KM, HOLBROOK JD. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?[J]. Beneficial Microbes, 2017, 8(5):763-778.
    [10] ODAMAKI T, KATO K, SUGAHARA H, HASHIKURA N, TAKAHASHI S, XIAO JZ, ABE F, OSAWA R. Age-related changes in gut microbiota composition from newborn to centenarian:a cross-sectional study[J]. BMC Microbiology, 2016, 16:90.
    [11] WAN Y, WANG FL, YUAN JH, LI J, JIANG DD, ZHANG JJ, LI H, WANG RY, TANG J, HUANG T, ZHENG JS, SINCLAIR AJ, MANN J, LI D. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors:a 6-month randomised controlled-feeding trial[J]. Gut, 2019, 68(8):1417-1429.
    [12] ANGELUCCI F, CECHOVA K, AMLEROVA J, HORT J. Antibiotics, gut microbiota, and Alzheimer's disease[J]. Journal of Neuroinflammation, 2019, 16(1):108.
    [13] GAO XH, CAO QH, CHENG Y, ZHAO DD, WANG Z, YANG HB, WU QJ, YOU LJ, WANG Y, LIN YT, LI XJ, WANG Y, BIAN JS, SUN DD, KONG LY, BIRNBAUMER L, YANG Y. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13):E2960-E2969.
    [14] NI J, WU GD, ALBENBERG L, TOMOV VT. Gut microbiota and IBD:causation or correlation?[J]. Nature Reviews Gastroenterology & Hepatology, 2017, 14(10):573-584.
    [15] CLAESSON MJ, CUSACK S, O'SULLIVAN O, GREENE-DINIZ R, de WEERD H, FLANNERY E, MARCHESI JR, FALUSH D, DINAN T, FITZGERALD G, STANTON C, van SINDEREN D, O'CONNOR M, HARNEDY N, O'CONNOR K, HENRY C, O'MAHONY D, FITZGERALD AP, SHANAHAN F, TWOMEY C, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1):4586-4591.
    [16] 余莉, 李红, 王思平. 基于高通量测序技术研究老年人肠道菌群结构变化[J]. 胃肠病学, 2019, 24(9):517-523. YU L, LI H, WANG SP. Changes of gut microbiota composition in elderly people based on high-throughput sequencing[J]. Chinese Journal of Gastroenterology, 2019, 24(9):517-523(in Chinese).
    [17] 李艳丽. 肠道微生态在脑老化认知功能减退中的作用及机制研究[D]. 太原:山西医科大学博士学位论文, 2019. LI YL. Study on the role and mechanism of gut microbiome in cognitive decline in normal brain aging[D]. Taiyuan:Doctoral Dissertation of Shanxi Medical University, 2019(in Chinese).
    [18] La ROSA F, CLERICI M, RATTO D, OCCHINEGRO A, LICITO A, ROMEO M, IORIO CD, ROSSI P. The gut-brain axis in alzheimer's disease and Omega-3. A critical overview of clinical trials[J]. Nutrients, 2018, 10(9):1267.
    [19] 王旭, 马素亚, 周梦玲, 李晨萌, 魏明清, 倪敬年, 李婷, 田金洲, 时晶. 阿尔茨海默病肠道菌群相对丰度与认知功能的关系[J]. 医学综述, 2021, 27(17):3498-3503. WANG X, MA SY, ZHOU ML, LI CM, WEI MQ, NI JN, LI T, TIAN JZ, SHI J. Correlation between relative abundance of gut microbiome and cognitive function in alzheimer's disease[J]. Medical Recapitulate, 2021, 27(17):3498-3503(in Chinese).
    [20] SCHEITHAUER TPM, RAMPANELLI E, NIEUWDORP M, VALLANCE BA, VERCHERE CB, van RAALTE DH, HERREMA H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes[J]. Frontiers in Immunology, 2020, 11:571731.
    [21] MUÑOZ-GARACH A, DIAZ-PERDIGONES C, TINAHONES FJ. Gut microbiota and type 2 diabetes mellitus[J]. Endocrinologia y Nutricion:Organo De La Sociedad Espanola De Endocrinologia y Nutricion, 2016, 63(10):560-568.
    [22] YAMASHIRO K, KURITA N, URABE T, HATTORI N. Role of the gut microbiota in stroke pathogenesis and potential therapeutic implications[J]. Annals of Nutrition & Metabolism, 2021, 77(Suppl 2):36-44.
    [23] STANLEY D, MOORE RJ, WONG CHY. An insight into intestinal mucosal microbiota disruption after stroke[J]. Scientific Reports, 2018, 8:568.
    [24] 胡娟, 汪星辉, 高杉, 孟祥云. 肠道菌群在心血管疾病中的作用及其机制研究进展[J]. 中国药理学通报, 2019, 35(11):1496-1500. HU J, WANG XH, GAO S, MENG XY. Research progress on role and mechanism of gut microbiota in cardiovascular diseases[J]. Chinese Pharmacological Bulletin, 2019, 35(11):1496-1500(in Chinese).
    [25] 魏康, 姜宁宁, 申意伟, 康国彬. 肠道菌群与高血压的机制探讨及相关治疗[J]. 重庆医学, 2022, 51(11):1963-1967. WEI K, JIANG NN, SHEN YW, KANG GB. Mechanism of gut microbiota and hypertension and its related treatment[J]. Chongqing Medicine, 2022, 51(11):1963-1967(in Chinese).
    [26] XIE D, ZHANG MS, WANG BL, LIN H, WU EQ, ZHAO HH, LI SC. Differential analysis of hypertension-associated intestinal microbiota[J]. International Journal of Medical Sciences, 2019, 16(6):872-881.
    [27] BRAVO JA, FORSYTHE P, CHEW MV, ESCARAVAGE E, SAVIGNAC HM, DINAN TG, BIENENSTOCK J, CRYAN JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(38):16050-16055.
    [28] BACQUÉ-CAZENAVE J, BHARATIYA R, BARRIÈRE G, DELBECQUE JP, BOUGUIYOUD N, Di GIOVANNI G, CATTAERT D, de DEURWAERDÈRE P. Serotonin in animal cognition and behavior[J]. International Journal of Molecular Sciences, 2020, 21(5):1649.
    [29] BERMÚDEZ-HUMARÁN LG, SALINAS E, ORTIZ GG, RAMIREZ-JIRANO LJ, MORALES JA, BITZER-QUINTERO OK. From probiotics to psychobiotics:live beneficial bacteria which act on the brain-gut axis[J]. Nutrients, 2019, 11(4):890.
    [30] GOEHLER LE, GAYKEMA RPA, OPITZ N, REDDAWAY R, BADR N, LYTE M. Activation in vagal afferents and central autonomic pathways:early responses to intestinal infection with Campylobacter jejuni[J]. Brain, Behavior, and Immunity, 2005, 19(4):334-344.
    [31] LIU YP, SANDERSON D, MIAN MF, MCVEY NEUFELD KA, FORSYTHE P. Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response[J]. Neuropharmacology, 2021, 195:108682.
    [32] van BODEGOM M, HOMBERG JR, HENCKENS MJAG. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure[J]. Frontiers in Cellular Neuroscience, 2017, 11:87.
    [33] 詹红丽, 王雯. 肠道菌群影响大脑途径的研究进展[J]. 胃肠病学, 2017, 22(9):572-574. ZHAN HL, WANG W. Advances in study on affecting pathway of intestinal flora on brain[J]. Chinese Journal of Gastroenterology, 2017, 22(9):572-574(in Chinese).
    [34] HUO R, ZENG BH, ZENG L, CHENG K, LI B, LUO YY, WANG HY, ZHOU CJ, FANG L, LI WX, NIU R, WEI H, XIE P. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:489.
    [35] SUDO N, CHIDA Y, AIBA YJ, SONODA J, OYAMA N, YU XN, KUBO C, KOGA Y. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. The Journal of Physiology, 2004, 558(Pt 1):263-275.
    [36] 王逸云. 肠道微生物与脑-肠轴的相互作用机制研究进展[D]. 重庆:重庆医科大学硕士学位论文, 2018. WANG YY. Advances in the research of interaction mechanism between intestinal microbiota and brain-gut axis[D]. Chongqing:Master's Thesis of Chongqing Medical University, 2018(in Chinese).
    [37] CARTER SF, HERHOLZ K, ROSA-NETO P, PELLERIN L, NORDBERG A, ZIMMER ER. Astrocyte biomarkers in alzheimer's disease[J]. Trends in Molecular Medicine, 2019, 25(2):77-95.
    [38] PARKER A, FONSECA S, CARDING SR. Gut microbes and metabolites as modulators of blood-bra?扮爠?孡??嵩????婮??婧?啩?????啤传?奲塡???啨?塡偬??兛?九?????甠瑍?浣楲捯牢潥扳椬漠琲愰′爰攬朠由氱愨琲攩?挱漳朵渭椱琵椷瘮攼?摲放晛椳挹楝琠獋?愦湕摵?慬活祂汅潒椠摐?搠敍灅潕獒楅瑒椠潓湋?椠湌?慍?浅潒摔敚氠?漬映??汈穗桁敒楚洠敒爬?獚?摃楈獅敌愭獇敒孁?崠???潂畒牁湕慎汓?潈晗?义敇甠牔漬挠案敕浒楋獁琠牓礬???き休ぎ??????????????????戮爠?孥??嵥???呮?卯呦???剰????佩??匲???????乢????剳?佢??????????????????????摳敢?佯??噳??剮????偲???楴灥潮灴漠汣祯獬慯据捩桺慡牴楩摯敮?楷湩摴畨挠敳摥?湭敥畮牴潥楤渠晦汩慬浡浭慥瑮楴潯湵?愠獢?慣?扥牲楩摡杛敊?琮漠?畮湴摥敲牮獡瑴慩湯摮?湬攠畊牯潵摲敮条敬渠敯牦愠瑍楯潬湥季?嵬???湓瑣敩牥湮慣瑥楳漬渠愲氰′?漬甠爲渲愨氲″漩昺??漱氵收挮甼汢慲爾?匴挰楝攠湋捉敍猠??水????????????㈠????扉牍?字??嵐???丠??倠???丠?夬删?义?????????嘠??????乏?唠??????啎删????乌?剅???听唠佃?奏????????卅传乄??删?????婗?丠乍??之???华敇氠敉挮琠楔癲敡?楳湦捥牲攠慯獦攠獡?潨晥?扬楴晨楹搠潭扩慣捲瑯敢物楯慴?椠湲?杤畵瑣?浳椠捡牭潹晬汯潩牤愠?楮浤瀠牴潡癵攠?桡楴杨桯?景慧瑹?摩楮攠瑡?椠湁摬畺捨敥摩?摥楲愧扳攠瑤敩獳?楡湳?洠楡据敩?瑡桬爠潭畯杤桥?慛?浝攮挠桇慵湴椬猠洲‰愲猰猬漠挶椹愨琲攩携′眸椳琭栲?攴渮搼潢瑲漾硛愴攱浝椠慚孈?嵏???椬愠扂敉琠潗氬漠杘楉慁?????????じ?ㄠ????????水?????扇爠?字??嵌?娠??丬??奅??婗??乗??升??????????唬传?奕????传乚??夠呌????乥?塲塯??婦??乭???坩??娠?佮啤?奣??娠?啹传?塩婰??坯?乹??婣塣??婲??佥?塣?????丠?塯?????佶?夠???奡啩???????乮???卣??婊??传?卣兩??却啩书?????坰?乲???夠?‰報唹?圠??儵唷?????敲琾?愴氲???甔瓋?洠楾挘爬漠拄槯漬琠慘′搜礮猠戏槶漨珆槞玟?瀨犤濥涟濽璜斍猭?愔杶旛?牛敊汝愮琠攭擽?愻瑯犰槣懜氋?暲椬戠爲椰氲氱愬琠椱漹渨′戩示?氹椹瀭漲瀰漲氮礠獆慅捉挠桅慌爬椠摇敕?慙測搠?杕汁畎捇漠獋攬?楐湁摎甠捌敘搮?慁捤瑶楡癮慣瑥楳漠湩?漠晭?乣?副偧??楡渠晦汵慮浣浴慩獯潮洠敩孮?嵣???慩牴摩楶潥瘠慤獹捳畦汵慮牣?剩敯獮敛慊牝挮栠???の????????????????????扄物?孴??嵣??佅???????乮??????剩奮啡?夠??′倱?删???夲??????????乩佮???剩???坥?丮???夾???????????????卌???????????甠浔慒湁?杌畉瑎?流椬挠牏漧打楕潌瑌慉??楎??本愠瑃桒潉打慐捉畅氠畆洬?才畏瑌祏牎楅捙椠灒牄漬搠畃捏敔湔獅??楐??椠浄灉牎潁癎攠獔?挬漠权湒楙瑁楎瘠敊?椮洠灇慵楴爠浭敩湣瑲?楢湩??偡匠?楥湰摬略捴敩摯?愠湦摲??倠健?偲卬??浡潤畯獬敥?浣潥摮散汥猠?潮映??汣穥栺敩業浰敬物?獡?摩楯獮敳愠獦敯孲?嵢??乩畮琠牡楮瑤椠潢湥?剡敶獩敯慵牲捛桊??㈠あ???????????ど???戠牡?孤??嵭?奵佮卩????′丰?‵??伴吸伺?吶??失???匼??吾??吴??坋?呍?乙?????????夬?卋???呈??呓???呭??呵???佲匠???乲????吠?乡佣?乯??侱娠?坮?????卥?卬????乮????婥佶?啬????吠?????乩??婲????剩佳呥??奥??佮??坭??坤??奯??????呥????剡?呲???????椮??慳捹瑣敨牯潧楥摲敩獡?癲畩汣杳愺瑴畨獥??楦??慣湩摡??楊??慲据瑡敬爠潯楦搠整獨?搠潊牡数楡??楳??牐敳摹畣捨敯?来畲瑩?浴楲捩牣漠打楯慣汩?汴楹瀬漠瀲漰氱礷猬愠挱挷栨愴爩椺搲攲?瀭爲漳搰甮挼瑢楲漾湛?愵湝搠?楁湏桕楒扉椠瑅?愠瑔桚敁牒潁猠捏氬攠牚潅獎楅獌孁?崠???楇牅捏畒汇慏瑐楏潕湌??㈠こ?????????㈠?????????????扵牭?孲??嵥?乲?女??????剴佯呲??吠????据??噴?剳丠??????楤挭犲漠杰汲楯慤?摣整癩敯汮漠灡浮敤渠瑤?慣湲摥?晳略湳挠瑡業潹湬孯?嵤???湡湱畵慥氠?副敲癭楡整睩?潮映??浤洠畧湬潩污潬朠祲???は????????????じ???戠牭?孤??崠?????????六?割??匠???????呛婊???????????卯卦???????婭??丧??乄?即????椺捊牁潄戬椠漲洰攱?洬椠挶爰漨朱氩椺愱?挵漭渱游攱挮琼楢潲渾獛?瘶楝愠?璎根攬?林痧璗?戠爱憁椬渠?態砇椬猠宋?崮??咲栱攭??潜用犄渏懶氨?濞曹??磹灻斄牞槏浲旆滞琟慘沄??敛摁楝振椯渲攰?″?みㄜ????ㄧ????????????戠爲?嬱??崲?圶?丠??奉倠????乌?奎??坚?丠??????娠??乎??剋???啗佁?塇吠??娠?书??奣奴??坯啦?坁??娭??中??塤???坤?乭?????呬剩??㈠?慥浬敬汳椠潯牮愠瑳敵獲?湩敶畡牬漠楯湦映汮慥浵浲慡瑬漠牳祴?牭攠獣灥潬湬獳攠?慩渾摩?挠潶杩湴楲瑯椼瘯敩 ̄楛流灝愯椯牓浥敬湥瑣?癥楤愠?偡??????呦??潵硡佮?慤?獮楧朠湐慨污楲湭条?灩慳瑴桳眧愠祗?楥湫??氠穃桯敮楦浥敲牥?獣?搠楩獮攠愲猰攱″浛楃捝攮嬠?嵵???杺楨湯杵??有?㈱??′?财??の???ど????㈩??????戴爷?嬠??嵅????传?婄???十啇乁??堠??????乏卋?呖?剃??呖匮????偯?並?????※婢??佩?????坲?乥??塢??呡?乤???圠??圠?乬??婥乩??????即????????吠??汨楥捲攠湮獥敵獲?潤湥汧祥?桥敲慡汴瑩桶祥?捤敩汳汯獲?瑥潲?灛牊潝氮椠晎敡牴慵瑲敥?摒略牶楩湥杷?椠湎橥畵牲祯?楯湧摹甬挠攲搰??椬??攴琨愳瀩氺愱猳椳愭??椰?嬼?嵲???愸獝琠牄潅敁湎瑅攠牒漬氠潗杕礠??水????????????休?ぉ?㈠???教?ぎ??扄爬?孈??嵍??刬丠奘??????乁???剉?????????搠敂??么????匬???????呒?丠????坕????传??剎?倠??匬吠?卅婎?坉华???佊????噮????????剄?乗?匬??啌???????????佌?噐?呡?????佤?卢????买?????啥???呴??卡??坩??删婭????噴??唠呤?剦??佲略浮汴????乢?佡????啦书??????删剁?呥呴?圠卩???捯?佭女??????????乮????‰???匴吳??????″倭??匴吮????剛???????吠????偋剉?丠婊?????潍猠瑍?洮椠捒牥潤扵楣潴瑩慯?挠潯湦猠瑬慯湮瑧氭祴?捲潭渠瑰牯潴汥?浴慩瑡畴物慯瑮椠潡湴?慓湣摨?晦畦湥捲琠楣潯湬?潡晴?浲楡捬爭潃杁氱椠慳?楮湡?瑳桥敳??乮匠孴?嵥??乡慴琠畨物数?乯散畡牭潰獵捳椠敡湴挠整??㈠ち????ㄠ??????????????扢牵?孡??嵣???卥呮???佩?剮啛?婝?????传卋??奥??????佲剮????????啹即卩?????????啨???剡呣佯乬?????剦啦卩婣?佡坬匠??????????传?卨???????坮?剐周婹??呯?????卡卬??乯??????佡剮??剴?乥???呲桥敡?洠楓捯牣潩扥楴潹琠慯?椠湐晨污畲敭湡捣敯獬?捧敹氬氠′搰攱愷琬栠′愱渨搴?洺椴挲爳漭朴氲椸愮氼?捲漾汛漵渰楝稠慗瑁楎漠湍?椬渠?瑅栠教?瀠敌牉楎渠慈瑙愬氠?浕漠留猬攠?扉牁慎楇渠孓?崬???牁愠楒測???攠桊慑瘬椠潑牉??慐湔搬??浕流畎湇椠瑃祗???ぁ????????????水??HENG GH. Deviations in hippocampal subregion in older adults with cognitive frailty[J]. Frontiers in Aging Neuroscience, 2021, 12:615852.
    [51] 黎帅, 黄桂兰, 张泓, 邹莹洁, 郭奎奎, 邓多喜, 赵东凤, 谭洁. 穴位埋线疗法对缺血性认知障碍模型大鼠的学习记忆力及海马CA1区突触超微结构的影响[J]. 湖南中医药大学学报, 2018, 38(11):1267-1272. LI S, HUANG GL, ZHANG H, ZOU YJ, GUO KK, DENG DX, ZHAO DF, TAN J. Effect of acupoint catgut embedding therapy on learning, memory, and synaptic ultrastructure in the hippocampal CA1 region in rats with ischemic cognitive impairment[J]. Journal of Hunan University of Chinese Medicine, 2018, 38(11):1267-1272(in Chinese).
    [52] 王治国, 战莹, 张国旭, 武晓丹, 霍花. β-淀粉样蛋白沉积与轻度认知障碍患者认知功能的相关性[J]. 中华老年多器官疾病杂志, 2020, 19(5):331-335. WANG ZG, ZHAN Y, ZHANG GX, WU XD, HUO H. Correlation of β-amyloid deposition with cognitive function in mild cognitive impairment patients[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2020, 19(5):331-335(in Chinese).
    [53] 王治国, 战莹, 张国旭, 武晓丹, 霍花. β-淀粉样蛋白沉积与轻度认知障碍患者认知功能的相关性[J]. 中华老年多器官疾病杂志, 2020, 19(5):331-335. WANG ZG, ZHAN Y, ZHANG GX, WU XD, HUO H. Correlation of β-amyloid deposition with cognitive function in mild cognitive impairment patients[J]. Chinese Journal of Multiple Organ Diseases in the Elderly, 2020, 19(5):331-335(in Chinese).
    [54] KNOPMAN DS, AMIEVA H, PETERSEN RC, CHÉTELAT G, HOLTZMAN DM, HYMAN BT, NIXON RA, JONES DT. Alzheimer disease[J]. Nature Reviews Disease Primers, 2021, 7(1):33.
    [55] 董晓辉. Arctigen对LPS诱导的神经炎症和认知障碍的保护作用及机制研究[D]. 洛阳:河南科技大学硕士学位论文, 2020. DONG XH. The protective effects and underlying mechanisms of arctigen on lipopolysaccharide induced neuroinflammation and cognitive impairment[D]. Luoyang:Master's Thesis of Henan University of Science and Technology, 2020(in Chinese).
    [56] JAEGER LB, DOHGU S, SULTANA R, LYNCH JL, OWEN JB, ERICKSON MA, SHAH GN, PRICE TO, FLEEGAL-DEMOTTA MA, ALLAN BUTTERFILED D, BANKS WA. Lipopolysaccharide alters the blood-brain barrier transport of amyloid β protein:a mechanism for inflammation in the progression of Alzheimer's disease[J]. Brain, Behavior, and Immunity, 2009, 23(4):507-517.
    [57] HANSEN DV, HANSON JE, SHENG M. Microglia in alzheimer's disease[J]. The Journal of Cell Biology, 2018, 217(2):459-472.
    [58] QIN Q, TENG ZQ, LIU CM, LI Q, YIN YS, TANG Y. TREM2, microglia, and alzheimer's disease[J]. Mechanisms of Ageing and Development, 2021, 195:111438.
    [59] HUANG YW A, ZHOU B, WERNIG M, SÜDHOF TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and aβ secretion[J]. Cell, 2017, 168(3):427-441.e21.
    [60] CHEN C, AHN EH, KANG SS, LIU X, ALAM A, YE KQ. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPβ/AEP signaling activation in Alzheimer's disease mouse model[J]. Science Advances, 2020, 6(31):eaba0466.
    [61] LEE HJ, LEE KE, KIM JK, KIM DH. Suppression of gut dysbiosis by Bifidobacterium longum alleviates cognitive decline in 5XFAD transgenic and aged mice[J]. Scientific Reports, 2019, 9:11814.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WEN Nana, ZHENG Guohua. Research progress on gut microbiota and cognitive impairment in the elderly[J]. Microbiology China, 2023, 50(2): 697-708

Copy
Share
Article Metrics
  • Abstract:428
  • PDF: 1095
  • HTML: 1266
  • Cited by: 0
History
  • Received:May 07,2022
  • Adopted:August 08,2022
  • Online: February 03,2023
  • Published: February 20,2023
Article QR Code