Screening of purine nucleoside-degrading lactic acid bacteria and exploration of its probiotic properties
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Hyperuricemia is a chronic metabolic disease caused by the disorder of purine metabolism and lactic acid bacteria can degrade purines. [Objective] To screen lactic acid bacteria that efficiently degrade purine nucleoside and analyze the probiotic properties. [Methods] High performance liquid chromatography was used to determine the strain with the strongest ability to degrade inosine and guanosine. What’s more, probiotic properties of the target strain were studied by drug sensitivity test, in vitro tolerance tests, and cell adhesion test. [Results] Lactobacillus fermentum SR2-6 was screened out, which had the highest degradation rates of inosine and guanosine (99.26% and 98.85%, respectively). This strain showed no resistance to five common antibiotics such as penicillin and chloramphenicol. The survival rate of the strain was 76.51% after treatment under pH 2.0 for 4 h. The count of the viable bacteria was up to 6.85 lg (CFU/mL) after 4 h treatment in artificial satiety intestinal juice. The number bacteria adhered to Caco-2 cells was (52.29±15.14) CFU/cell. [Conclusion] SR2-6 can efficiently degrade inosine and guanosine, with excellent probiotic properties. It is a potential superior strain for the prevention and adjuvant treatment of hyperuricemia and can be applied into the development of related functional products.

    Reference
    [1] 吴芃, 王亮, 李海涛, 乔攀爽, 张奥, 周虹. 高尿酸血症模型的建立及降尿酸药物的研究进展[J]. 中国病理生理杂志, 2021, 37(7):1283-1294. WU P, WANG L, LI HT, QIAO PS, ZHANG A, ZHOU H. Progress in hyperuricemia model establishment and uric acid-lowering drugs[J]. Chinese Journal of Pathophysiology, 2021, 37(7):1283-1294(in Chinese).
    [2] VILLEGAS R, XIANG YB, ELASY T, XU WH, CAI H, CAI Q, LINTON MF, FAZIO S, ZHENG W, SHU XO. Purine-rich foods, protein intake, and the prevalence of hyperuricemia:The Shanghai Men's Health Study[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22(5):409-416.
    [3] 洪岩, 张越. 非布司他、苯溴马隆、别嘌呤醇治疗高尿酸血症的安全性和有效性比较[J]. 四川解剖学杂志, 2020, 28(1):96-98. HONG Y, ZHANG Y. Comparison of safety and efficacy of febuxostat, benzbromarone and allopurinol in the treatment of hyperuricemia[J]. Sichuan Journal of Anatomy, 2020, 28(1):96-98(in Chinese).
    [4] WANG HN, MEI L, DENG Y, LIU YH, WEI XQ, LIU M, ZHOU JR, MA H, ZHENG PY, YUAN JL, LI M. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis[J]. Nutrition, 2019, 62:63-73.
    [5] 杨殿斌. 降血尿酸乳酸菌筛选及乳杆菌对高血尿酸血症大鼠作用的研究[D]. 大连:大连医科大学硕士学位论文, 2013. YANG DB. The screening of Lactobacillus reduced blood uric acid and Lactobacillus' effect in hyperuricemia rat model[D]. Dalian:Master's Thesis of Dalian Medical University, 2013(in Chinese).
    [6] 金方. 降血尿酸益生菌株的筛选和对高尿酸血症模型大鼠作用机理的探索[D]. 上海:上海交通大学硕士学位论文, 2018. JIN F. Isolation of hypouricemic probiotics and exploration the mechanism of hyperuricemic effects on model rats[D]. Shanghai:Master's Thesis of Shanghai Jiao Tong University, 2018(in Chinese).
    [7] 王垚. 具有潜在降尿酸能力乳酸菌的筛选及应用研究[D]. 扬州:扬州大学硕士学位论文, 2021. WANG Y. Screening and application of lactic acid bacteria with potential uric acid-lowering ability[D]. Yangzhou:Master's Thesis of Yangzhou University, 2021(in Chinese).
    [8] 麻菊美. 降解嘌呤核苷乳酸菌的筛选及生物学特性研究[D]. 杭州:浙江大学硕士学位论文, 2017. MA JM. Isolation of lactic acid bacteria with high ability of purine nucleoside-decomposing and evaluation of their biological properties[D]. Hangzhou:Master's Thesis of Zhejiang University, 2017(in Chinese).
    [9] 牛春华, 肖茹雪, 赵子健, 高磊, 崔伟东, 梁铁, 林丽, 李盛钰. 植物乳杆菌UA149的降尿酸作用[J]. 现代食品科技, 2020, 36(2):1-6, 217. NIU CH, XIAO RX, ZHAO ZJ, GAO L, CUI WD, LIANG T, LIN L, LI SY. Serum uric acid lowering effect of Lactobacillus plantarum UA149 on hyperuricemic rats[J]. Modern Food Science and Technology, 2020, 36(2):1-6, 217(in Chinese).
    [10] 刘永红. 半夏块茎与细胞培养体系的建立及主要生物碱的代谢调控研究[D]. 咸阳:西北农林科技大学博士学位论文, 2010. LIU YH. Protocorm-like body and cell suspension culture and the regulation of alkaloid metabolism by Pinellia ternata breit[D]. Xianyang:Doctoral Dissertation of Northwest A & F University, 2010(in Chinese).
    [11] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. DONG XZ, CAI MY. Identification of common bacterial systems mannual[M]. Beijing:Science Press, 2001(in Chinese).
    [12] MORENO C, ROMERO J, ESPEJO RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio The GenBank accession numbers for the sequences reported in this paper are AF388386(Vp23), AF388387(Vp16), AF388388(F44), AF388389(Vp27), AF388390(F6), AF388391(3d2), AF388392(3d4), AF388393(3d7) and AF388394(3d8)[J]. Microbiology, 2002, 148(4):1233-1239.
    [13] 李艳莉. 酸奶及发酵剂中分离乳酸菌药物敏感性研究[D]. 广州:华南理工大学硕士学位论文, 2015. LI YL. Antimicrobial susceptibilities of lactic acid bacteria isolated from yogurts and starter culture[D]. Guangzhou:Master's Thesis of South China University of Technology, 2015(in Chinese).
    [14] ARASU MV, KIM DH, KIM PI, JUNG MW, ILAVENIL S, JANE M, LEE KD, AL-DHABI NA, CHOI KC. In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf[J]. Annals of Microbiology, 2014, 64(3):1333-1346.
    [15] SHEHATA MG, EL SOHAIMY SA, EL-SAHN MA, YOUSSEF MM. Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity[J]. Annals of Agricultural Sciences, 2016, 61(1):65-75.
    [16] 朱艳, 尹曼, 魏颖. 果蔬发酵汁对肠道益生菌及大肠杆菌黏附能力的影响[J]. 食品科技, 2019, 44(11):9-15. ZHU Y, YIN M, WEI Y. Effect of fermented juices of fruits and vegetables on the adhesion of intestinal probiotics and Escherichia coli[J]. Food Science and Technology, 2019, 44(11):9-15(in Chinese).
    [17] 中华人民共和国国家卫生和计划生育委员会. GB 4789.2-2016食品微生物学检验菌落总数测定[S]. 北京:中国标准出版社, 2016. National Health and Family Planning Commission of the People's Republic of China. GB 4789.2-2016 Determination of total bacterial count in food microbiological examination[S]. Beijing:China Standards Press, 2016(in Chinese).
    [18] 肖源勋, 张从新, 曾鲜丽, 袁志超. 益生菌对高尿酸血症肾功能损伤的疗效分析研究[J]. 中国全科医学, 2020, 23(11):1376-1382, 1388. XIAO YX, ZHANG CX, ZENG XL, YUAN ZC. Analysis of therapeutic effects of probiotics on renal injury induced by hyperuricemia[J]. Chinese General Practice, 2020, 23(11):1376-1382, 1388(in Chinese).
    [19] TSUBOI H, KANEKO N, SATOU A, TSUCHIYA Y. Lactic acid bacteria having action of lowering blood uric acid level:U.S. Patent 8, 460, 918[P]. 2013-6-11.
    [20] GANGULY NK, BHATTACHARYA SK, SESIKERAN B, NAIR GB,RAMAKRISHNA BS, SACHDEV HPS, BATISH VK,KANAGASABAPATHY AS, MUTHUSWAMY V, KATHURIA SC, KATOCH VM, SATYANARAYANA K, TOTEJA GS, RAHI M, RAO S, BHAN MK, KAPUR R, HEMALATHA R. ICMR-DBT guidelines for evaluation of probiotics in food[J]. The Indian Journal of Medical Research, 2011, 134:22-25.
    [21] 袁佩娜. 微生态制剂的质量控制要求[J]. 中国微生态学杂志, 2002, 14(4):187-188. YUAN PN. Quality control requirements for probiotics[J]. Chinese Journal of Microecology, 2002, 14(4):187-188(in Chinese).
    [22] 占萌, 李柏良, 王成凤, 李慧臻, 李子叶, 霍贵成. 15株乳酸菌的表面性质及其黏附能力[J]. 食品工业科技, 2018, 39(24):122-127. ZHAN M, LI BL, WANG CF, LI HZ, LI ZY, HUO GC. Surface properties and adhesion ability of 15 lactic acid bacteria[J]. Science and Technology of Food Industry, 2018, 39(24):122-127(in Chinese).
    [23] 周艳, 祁艳, 纪瑞, 谭俊, 陈代杰. 富硒长双歧杆菌DD98菌株的黏附特性及黏附机制初步研究[J]. 食品工业科技, 2019, 40(13):84-88. ZHOU Y, QI Y, JI R, TAN J, CHEN DJ. Adhesion ability of selenium-enriched Bifidobacterium longum DD98 to caco-2 cell and preliminary study on its mechanism[J]. Science and Technology of Food Industry, 2019, 40(13):84-88(in Chinese).
    [24] YAMADA N, SAITO-IWAMOTO C, NAKAMURA M, SOEDA M, CHIBA Y, KANO H, ASAMI Y. Lactobacillus gasseri PA-3 uses the purines IMP, inosine and hypoxanthine and reduces their absorption in rats[J]. Microorganisms, 2017, 5(1):10.
    [25] NI CX, LI X, WANG LL, LI X, ZHAO JX, ZHANG H, WANG G, CHEN W. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism[J]. Food & Function, 2021, 12(15):7054-7067.
    [26] KUO YW, HSIEH SH, CHEN JF, LIU CR, CHEN CW, HUANG YF, HO HH. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats[J]. PeerJ, 2021, 9:e11209.
    [27] 呼静, 崔鹏月, 双全. 高效降尿酸乳酸菌的筛选及其益生特性研究[J]. 食品与发酵工业, 2022. DOI:10.13995/j.cnki.11-1802/ts.029929. HU J, CUI PY, SHUANG Q. Screening of lactic acid bacteria with high ability of uric acid-lowering and evaluation of its probiotic properties[J]. Food and Fermentation Industries, 2022. DOI:10.13995/j.cnki.11-1802/ts.029929(in Chinese).
    [28] 张汝京, 胡亚凡, 海丹, 赵梦娜, 陆兆新, 吕凤霞, 赵海珍, 张充, 别小妹. 具有抑制肠道致病菌和黏附Caco-2细胞作用的益生性乳酸菌的筛选及鉴定[J]. 食品工业科技, 2019, 40(20):133-139, 153. ZHANG RJ, HU YF, HAI D, ZHAO MN, LÜ ZX, LYU FX, ZHAO HZ, ZHANG C, BIE XM. Screening and identification of probiotic Lactobacillus strains inhibiting intestinal pathogens and adhering to caco-2 cells[J]. Science and Technology of Food Industry, 2019, 40(20):133-139, 153(in Chinese).
    [29] FURUHASHI M. New insights into purine metabolism in metabolic diseases:role of xanthine oxidoreductase activity[J]. American Journal of Physiology Endocrinology and Metabolism, 2020, 319(5):E827-E834.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

REN Yujie, SHAN Chengjun, WANG Ying, ZHANG Hui, LIU Haonan, LIU Xiaoli, ZHOU Jianzhong. Screening of purine nucleoside-degrading lactic acid bacteria and exploration of its probiotic properties[J]. Microbiology China, 2023, 50(2): 541-552

Copy
Share
Article Metrics
  • Abstract:507
  • PDF: 1060
  • HTML: 1085
  • Cited by: 0
History
  • Received:April 30,2022
  • Adopted:June 17,2022
  • Online: February 03,2023
  • Published: February 20,2023
Article QR Code