Research progress and challenges in cloning large gene clusters
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [82]
  • | | | |
  • Comments
    Abstract:

    Natural products, which feature complex structures and diverse activities, are important sources of new drugs. The research on the biosynthesis pathways of natural products is conducive to exploring the synthesis mechanism catalyzed by enzymes and promoting the application of complex natural products. The corresponding gene clusters regulate the biosynthesis of natural products, and a large number of biosynthetic gene clusters (BGCs) of natural products are not expressed or expressed at low levels in wild-type strains. Thus, these gene clusters are usually cloned before further research on them. It remains challenging to clone and express large gene clusters for the discovery of novel natural products. Construction of genomic library, transformation-associated recombination (TAR), and Red/ET recombination technology are essential techniques for cloning large gene clusters. This study summarizes the research on these three cloning techniques from the aspect of cloning strategy and application. Moreover, we discuss the challenges in cloning large gene clusters, providing a methodological reference for further study.

    Reference
    [1] KIM LJ, OHASHI M, ZHANG Z, TAN D, ASAY M, CASCIO D, RODRIGUEZ JA, TANG Y, NELSON HM. Prospecting for natural products by genome mining and microcrystal electron diffraction[J]. Nature Chemical Biology, 2021, 17(8):872-877.
    [2] 张琳, 宫春杰. 微生物来源的天然产物研究进展[J]. 生物化工, 2020, 6(6):121-125. ZHANG L, GONG CJ. Research progress of natural products from microorganisms[J]. Biological Chemical Engineering, 2020, 6(6):121-125 (in Chinese).
    [3] NEWMAN DJ, CRAGG GM. Natural products as sources of new drugs over the last 25 years[J]. Journal of Natural Products, 2007 70(3):461-77.
    [4] VIJU N, PUNITHA SMJ, SATHEESH S. An analysis of biosynthesis gene clusters and bioactivity of marine bacterial symbionts[J]. Current Microbiology, 2021, 78(7):2522-2533.
    [5] 杨谦, 程伯涛, 汤志军, 刘文. 基因组挖掘在天然产物发现中的应用和前景[J]. 合成生物学, 2021, 2(5):697-715. YANG Q, CHENG BT, TANG ZJ, LIU W. Applications and prospects of genome mining in the discovery of natural products[J]. Synthetic Biology Journal, 2021, 2(5):697-715 (in Chinese).
    [6] MALIT JJL, LIU WC, CHENG AF, SAHA S, LIU LL, Qian PY. Global genome mining reveals a cytochrome P450-catalyzed cyclization of crownlike cyclodipeptides with neuroprotective activity[J]. Organic Letters, 2021, 23(17):6601-6605.
    [7] 李瑞娟, 赵晓雨, 杨润雨, 刘洋, 颜富, 王海龙, 张友明, 符军. 噬菌体重组酶介导的DNA同源重组工程[J]. 微生物学通报, 2021, 48(9):3230-3248. LI RJ, ZHAO XY, YANG RY, LIU Y, YAN F, WANG HL, ZHANG YM, FU J. Recombineering mediated by bacteriophage recombinases[J]. Microbiology China, 2021, 48(9):3230-3248 (in Chinese).
    [8] TANG L, SHAH S, CHUNG L, CARNEY J, KATZ L, KHOSLA C, JULIEN B. Cloning and heterologous expression of the epothilone gene cluster[J]. Science, 2000, 287(5453):640-642.
    [9] 付博, 樊泽正, 杜毅涛, 郭子晟, 李忠玲. 微生物基因组挖掘的方法和研究策略[J]. 基因组学与应用生物学, 2018, 37(6):2451-2458. FU B, FAN ZZ, DU YT, GUO ZS, LI ZL. Approaches and strategies of genome mining in microbes[J]. Genomics and Applied Biology, 2018, 37(6):2451-2458 (in Chinese).
    [10] RASCHER A, HU ZH, VISWANATHAN N, SCHIRMER A, REID R, NIERMAN WC, LEWIS M, HUTCHINSON CR. Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602[J]. FEMS Microbiology Letters, 2003, 218(2):223-230.
    [11] PENN J, LI X, WHITING A, LATIF M, GIBSON T, SILVA CJ, BRIAN P, DAVIES J, MIAO V, WRIGLEY SK, Baltz RH. Heterologous production of daptomycin in Streptomyces lividans[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(2):121-128.
    [12] CANO-PRIETO C, GARCÍA-SALCEDO R, SÁNCHEZ-HIDALGO M, BRAÑA AF, FIEDLER HP, MÉNDEZ C, SALAS JA, OLANO C. Genome mining of Streptomyces sp. Tü 6176:characterization of the nataxazole biosynthesis pathway[J]. Chembiochem:a European Journal of Chemical Biology, 2015, 16(10):1461-1473.
    [13] YAMANAKA K, REYNOLDS KA, KERSTEN RD, RYAN KS, GONZALEZ DJ, NIZET V, DORRESTEIN PC, MOORE BS. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5):1957-1962.
    [14] BIAN XY, HUANG F, STEWART FA, XIA LQ, ZHANG YM, MÜLLER R. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering[J]. Chembiochem:a European Journal of Chemical Biology, 2012, 13(13):1946-1952.
    [15] MALIT JJL, WU CH, LIU LL, QIAN PY. Global genome mining reveals the distribution of diverse thioamidated RiPP biosynthesis gene clusters[J]. Frontiers in Microbiology, 2021, 12:635389.
    [16] MURRAY NE, MURRAY K. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments[J]. Nature, 1974, 251(5475):476-481.
    [17] 于洋, 蒋世翠, 王康宇, 薛菲, 张美萍, 王义. 大片段DNA克隆载体的研究进展[J]. 黑龙江农业科学, 2015(2):147-151. YU Y, JIANG SC, WANG KY, XUE F, ZHANG MP, WANG Y. Research progress of large fragment DNA cloning vector[J]. Heilongjiang Agricultural Sciences, 2015(2):147-151 (in Chinese).
    [18] LI JE, GUO ZY, HUANG W, MENG XX, AI GM, TANG GL, CHEN YH. Mining of a streptothricin gene cluster from Streptomyces sp. TP-A0356 genome via heterologous expression[J]. Science China Life Sciences, 2013, 56(7):619-627.
    [19] 蒋程恺, 孟思童, 张菲, 胡晓婧, 谢守锋, 陶美凤, 梁晶丹, 康前进, 白林泉, 邓子新. 林可链霉菌NRRL 2936中帕马霉素生物合成基因簇的异源表达及调控基因功能研究[J]. 微生物学通报, 2018, 45(2):334-346. JIANG CK, MENG ST, ZHANG F, HU XJ, XIE SF, TAO MF, LIANG JD, KANG QJ, BAI LQ, DENG ZX. Heterologous expression of the biosynthetic gene cluster of pamamycin and investigation on the functions of regulatory genes from Streptomyces lincolnensis NRRL 2936[J]. Microbiology China, 2018, 45(2):334-346 (in Chinese).
    [20] COLLINS J, HOHN B. Cosmids:a type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage lambda heads[J]. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75(9):4242-4246.
    [21] MURRAY AW, SZOSTAK JW. Construction of chromosomes in yeast[J]. Nature, 1983, 305:189-193.
    [22] BURKE DT, CARLE GF, OLSON MV. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors[J]. Science, 1987, 236(4803):806-812.
    [23] STERNBERG N. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(1):103-107.
    [24] KIM UJ, SHIZUYA H, de JONG PJ, BIRREN B, SIMON MI. Stable propagation of cosmid sized human DNA inserts in an F factor-based vector[J]. Nucleic Acids Research, 1992, 20:1083-1085.
    [25] SHIZUYA H, BIRREN B, KIM UJ, MANCINO V, SLEPAK T, TACHIIRI Y, SIMON M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(18):8794-8797.
    [26] IOANNOU PA, AMEMIYA CT, GARNES J, KROISEL PM, SHIZUYA H, CHEN C, BATZER MA, JONG PJD. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments[J]. Nature Genetics, 1994, 6:84-89.
    [27] HAMILTON CM. A binary-BAC system for plant transformation with high-molecular-weight DNA[J]. Gene, 1997, 200(1/2):107-116.
    [28] LIU YG, SHIRANO Y, FUKAKI H, YANAI Y, TASAKA M, TABATA S, SHIBATA D. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11):6535-6540.
    [29] COREN JS, STERNBERG N. Construction of a PAC vector system for the propagation of genomic DNA in bacterial and mammalian cells and subsequent generation of nested deletions in individual library members[J]. Gene, 2001, 264(1):11-18.
    [30] LIU HB, JIANG H, HALTLI B, KULOWSKI K, MUSZYNSKA E, FENG XD, SUMMERS M, YOUNG M, GRAZIANI E, KOEHN F, Carter GT, He M. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-Streptomyces artificial chromosome vector, pSBAC[J]. Journal of Natural Products, 2009, 72(3):389-395.
    [31] SHI X, ZENG H, XUE Y, LUO M. A pair of new BAC and BIBAC vectors that facilitate BAC/BIBAC library construction and intact large genomic DNA insert exchange[J]. Plant Methods, 2011, 7:33.
    [32] 黄胜,李娜,周俊,何璟. 适用于链霉菌大片段基因组DNA克隆和异源表达的细菌人工染色体(BAC)载体的构建及应用[J]. 微生物学报, 2012, 52(1):30-37. HUANG S, LI N, ZHOU J, HE J. Construction of a new bacterial artificial chromosome (BAC) vector for cloning of large DNA fragments and heterologous expression in Streptomyces[J]. Acta Microbiologica Sinica, 2012, 52(1):30-37 (in chinese).
    [33] COREN JS. Retrofitting the BAC cloning vector pBeloBAC11 by the insertion of a mutant loxP site[J]. BMC Research Notes, 2017, 10(1):344.
    [34] TAKITA E, YOSHIDA K, HANANO S, SHINMYO A, SHIBATA D. Development of the binary vector pTACAtg1 for stable gene expression in plant:reduction of gene silencing in transgenic plants carrying the target gene with long flanking sequences[J]. Plant Biotechnology Journal (Tokyo), 2021, 38(4):391-400.
    [35] TANAKA T, SAITO A, SUZUKI T, MIYAMOTO Y, TAKAYAMA K, OKAMOTO T, MORIISHI K. Establishment of a stable SARS-CoV-2 replicon system for application in high-throughput screening[J]. Antiviral Research, 2022, 199:105268.
    [36] SANTRA DK, SANDHU D, TAI T, BHATTACHARYYA MK. Construction and characterization of a soybean yeast artificial chromosome library and identification of clones for the Rps6 region[J]. Functional & Integrative Genomics, 2003, 3(4):153-159.
    [37] CREUSOT F, FOUILLOUX E, DRON M, LAFLEURIEL J, PICARD G, BILLAULT A, LE PASLIER D, COHEN D, CHABOUTÉ ME, DURR A. The CIC library:a large insert YAC library for genome mapping in Arabidopsis thaliana[J]. Plant Journal:for Cell and Molecular Biology, 1995, 8(5):763-770.
    [38] ŠAFÁŘ J, ŠIMKOVÁ H, DOLEŽEL J. Construction of BAC libraries from flow-sorted chromosomes[J]. Methods in Molecular Biology:Clifton, N J, 2016, 1429:135-149.
    [39] BUCKLEY KM, DONG P, CAMERON RA, RAST JP. Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms[J]. Briefings in Functional Genomics, 2018, 17(5):362-371.
    [40] FENG ZY, WANG LY, RAJSKI SR, XU ZN, Coeffet-LeGal MF, SHEN B. Engineered production of iso-migrastatin in heterologous Streptomyces hosts[J]. Bioorganic & Medicinal Chemistry, 2009, 17(6):2147-2153.
    [41] TAKAO RS, SAKAI K, KOSHINO H, OSADA H, TAKAHASHI S. Identification of the kinanthraquinone biosynthetic gene cluster by expression of an atypical response regulator[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(3):714-721.
    [42] KAKIRDE KS, WILD J, GODISKA R, MEAD da, WIGGINS AG, GOODMAN RM, SZYBALSKI W, LILES MR. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries[J]. Gene, 2011, 475(2):57-62.
    [43] 刘庆丽, 王晓明, 王革娇, 罗朝喜, 谭新球, 罗美中. 稻曲病菌UV-2菌株细菌人工染色体文库构建及分析[J]. 微生物学通报, 2013, 40(9):1715-1722. LIU QL, WANG XM, WANG GJ, LUO CX, TAN XQ, LUO MZ. Construction of a bacterial artificial chromosome library of Villosiclava virens UV-2 genome[J]. Microbiology China, 2013, 40(9):1715-1722 (in Chinese).
    [44] BENTLEY SD, CHATER KF, CERDEÑO-TÁRRAGA AM, CHALLIS GL, THOMSON NR, JAMES KD, HARRIS DE, QUAIL MA, KIESER H, HARPER D, BATEMAN A, BROWN S, CHANDRA G, CHEN CW, COLLINS M, CRONIN A, FRASER A, GOBLE A, HIDALGO J, HORNSBY T, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature, 2002, 417(6885):141-147.
    [45] LIANG MD, LIU LS, XU F, ZENG XQ, WANG RJ, YANG JL, WANG WS, KARTHIK L, LIU JK, YANG ZH, Zhu GL, Wang SL, Bai LQ, Tong YJ, Liu XT, Wu M, Zhang LX, Tan GY. Activating cryptic biosynthetic gene cluster through a CRISPR-Cas12a-mediated direct cloning approach[J]. Nucleic Acids Research, 2022, 50(6):3581-3592.
    [46] FAN YQ, WANG C, WANG LP, CHAIROUNGDUA A, PIYACHATURAWAT P, FU P, ZHU WM. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164[J]. Marine Drugs, 2018, 16(8):282.
    [47] 唐丹. 黑蛋巢菌与秦岭链霉菌中活性成分挖掘及生物合成初探[D]. 杨凌:西北农林科技大学博士学位论文, 2019. TANG D. Bioactive components isolated from Cyathus and Qinling-mountain-derived Streptomyces and their preliminary biosynthesis study[D]. Yangling:Doctoral Dissertation of Northwest A&F University, 2019 (in Chinese).
    [48] LIU LL, CHEN ZF, LIU Y, TANG D, GAO HH, ZHANG Q, GAO JM. Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. asoensis[J]. Organic Chemistry Frontiers, 2020, 7(24):4008-4018.
    [49] TANG D, LIU LL, HE QR, YAN W, LI D, GAO JM. Ansamycins with antiproliferative and antineuroinflammatory activity from moss-soil-derived Streptomyces cacaoi subsp. asoensis H2S5[J]. Journal of Natural Products, 2018, 81(9):1984-1991.
    [50] 李娥贤, 殷富有, 张敦宇, 陈越, 余腾琼, 雷涌涛, 肖素勤, 程在全, 柯学. 云南药用野生稻高质量染色体DNA的制备[J]. 作物杂志, 2020(5):103-109. LI EX, YIN FY, ZHANG DY, CHEN Y, YU TQ, LEI YT, XIAO SQ, CHENG ZQ, KE X. Extraction of high-quality chromosome DNA in Yunnan wild rice Oryza officinalis[J]. Crops, 2020(5):103-109 (in Chinese).
    [51] HE RF, WANG YY, SHI ZY, REN X, ZHU LL, WENG QM, HE GC. Construction of a genomic library of wild rice and Agrobacterium-mediated transformation of large insert DNA linked to BPH resistance locus[J]. Gene, 2003, 321:113-121.
    [52] ANGGORO DT, TARK-DAME M, WALMSLEY A, OKA R, de SAIN M, STAM M. BIBAC-GW-based vectors for generating reporter lines for site-specific genome editing in planta[J]. Plasmid, 2017, 89:27-36.
    [53] CODY JP, GRAHAM ND, BIRCHLER JA. BiBAC modification and stable transfer into maize (Zea mays) hi-II immature embryos via Agrobacterium-mediated transformation[J]. Current Protocols in Plant Biology, 2017, 2(4):350-369.
    [54] ZHAI JF, WANG Y, SUN CY, JIANG SC, WANG KY, ZHANG Y, ZHANG HB, ZHANG MP. A plant-transformation-competent BIBAC library of ginseng (Panax ginseng C. A. Meyer) for functional genomics research and characterization of genes involved in ginsenoside biosynthesis[J]. Molecular Breeding, 2013, 31(3):685-692.
    [55] FRARY A, HAMILTON CM. Efficiency and stability of high molecular weight DNA transformation:an analysis in tomato[J]. Transgenic Research, 2001, 10(2):121-132.
    [56] HIROSE Y, SUDA K, LIU YG, SATO S, NAKAMURA Y, YOKOYAMA K, YAMAMOTO N, HANANO S, TAKITA E, SAKURAI N, Suzuki H, Nakamura Y, Kaneko T, Yano K, Tabata S, Shibata D. The Arabidopsis TAC position viewer:a high-resolution map of transformation-competent artificial chromosome (TAC) clones aligned with the Arabidopsis thaliana Columbia-0 genome[J]. The Plant Journal:for Cell and Molecular Biology, 2015, 83(6):1114-1122.
    [57] LIU R, ZHANG HH, CHEN ZX, SHAHID MQ, FU XL, LIU XD. Drought-tolerant rice germplasm developed from an Oryza officinalis transformation-competent artificial chromosome clone[J]. Genetics and Molecular Research:GMR, 2015, 14(4):13667-13678.
    [58] 杨正安, 丁玉梅, 张应华, 张兴国. 黑籽南瓜基因组可转化人工染色体(TAC)文库的构建及分析[J]. 农业生物技术学报, 2012, 20(2):211-217. YANG ZA, DING YM, ZHANG YH, ZHANG XG. The construction and analysis of genomic library based on transformation-competent artificial chromosome (TAC) vector in Cucurbita ficifolia[J]. Journal of Agricultural Biotechnology, 2012, 20(2):211-217 (in Chinese).
    [59] KOUPRINA N, KIM JH, LARIONOV V. Highly selective, CRISPR/Cas9-mediated isolation of genes and genomic loci from complex genomes by TAR cloning in yeast[J]. Current Protocols, 2021, 1(8):e207.
    [60] KOUPRINA N, NOSKOV VN, LARIONOV V. Selective isolation of large segments from individual microbial genomes and environmental DNA samples using transformation-associated recombination cloning in yeast[J]. Nature Protocols, 2020, 15(3):734-749.
    [61] NOSKOV VN, KOUPRINA N, LEEM SH, OUSPENSKI I, BARRETT JC, LARIONOV V. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast[J]. BMC Genomics, 2003, 4(1):16.
    [62] KOUPRINA N, ANNAB L, GRAVES J, AFSHARI C, BARRETT JC, RESNICK MA, LARIONOV V. Functional copies of a human gene can be directly isolated by transformation-associated recombination cloning with a small 3' end target sequence[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8):4469-4474.
    [63] WU NX, HUANG H, MIN TL, HU HF. TAR cloning and integrated overexpression of 6-demethylchlortetracycline biosynthetic gene cluster in Streptomyces aureofaciens[J]. Acta Biochimica et Biophysica Sinica, 2017, 49(12):1129-1134.
    [64] LEE NCO, LARIONOV V, KOUPRINA N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast[J]. Nucleic Acids Research, 2015, 43(8):e55.
    [65] KANG HS, CHARLOP-POWERS Z, BRADY SF. Multiplexed CRISPR/Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J]. ACS Synthetic Biology, 2016, 5(9):1002-1010.
    [66] KIM SH, LU WL, AHMADI MK, MONTIEL D, TERNEI MA, BRADY SF. Atolypenes, tricyclic bacterial sesterterpenes discovered using a multiplexed in vitro Cas9-TAR gene cluster refactoring approach[J]. ACS Synthetic Biology, 2019, 8(1):109-118.
    [67] KIM H, JI CH, JE HW, KIM JP, KANG HS. mpCRISTAR:multiple plasmid approach for CRISPR/Cas9 and TAR-mediated multiplexed refactoring of natural product biosynthetic gene clusters[J]. ACS Synthetic Biology, 2020, 9(1):175-180.
    [68] HU YM, NAN F, MAINA SW, GUO J, WU SL, XIN ZH. Clone of plipastatin biosynthetic gene cluster by transformation-associated recombination technique and high efficient expression in model organism Bacillus subtilis[J]. Journal of Biotechnology, 2018, 288:1-8.
    [69] NOSKOV VN, KARAS BJ, YOUNG L, CHUANG RY, GIBSON DG, LIN YC, STAM J, YONEMOTO IT, SUZUKI Y, ANDREWS-PFANNKOCH C, GLASS JI, SMITH HO, HUTCHISON CA 3RD, VENTER JC, WEYMAN PD. Assembly of large, high G+C bacterial DNA fragments in yeast[J]. ACS Synthetic Biology, 2012, 1(7):267-273.
    [70] 苏会娟. 诱导型酵母转化重组系统的构建及其应用[D]. 南京:南京理工大学硕士学位论文, 2018. SU HJ. Construction and application of the inducible transformation-associated recombination in Saccharomyces cerevisiae[D]. Nanjing:Master's Thesis of Nanjing University of Science and Technology, 2018 (in Chinese).
    [71] TANG XY, LI J, MILLÁN-AGUIÑAGA N, ZHANG JJ, O'NEILL EC, UGALDE JA, JENSEN PR, MANTOVANI SM, MOORE BS. Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining[J]. ACS Chemical Biology, 2015, 10(12):2841-2849.
    [72] BINZ TM, WENZEL SC, SCHNELL HJ, BECHTHOLD A, MÜLLER R. Heterologous expression and genetic engineering of the phenalinolactone biosynthetic gene cluster by using Red/ET recombineering[J]. ChemBioChem:a European Journal of Chemical Biology, 2008, 9(3):447-454.
    [73] HUANG F, TANG JL, HE L, DING XZ, HUANG SY, ZHANG YM, SUN YJ, XIA LQ. Heterologous expression and antitumor activity analysis of syringolin from Pseudomonas syringae pv. syringae B728a[J]. Microbial Cell Factories, 2018, 17(1):31.
    [74] 杨朝霞, 杨霄旭, 李苗苗, 石小亚, 向双林. 通过减毒和Red/ET同源重组构建跨界基因沉默菌株[J]. 生命科学研究, 2016, 20(3):208-213. YANG ZX, YANG XX, LI MM, SHI XY, XIANG SL. Construction of tTrans-kingdom RNAi bacteria by attenuation and Red/ET homologous recombination[J]. Life Science Research, 2016, 20(3):208-213 (in Chinese).
    [75] TU Q, HERRMANN J, HU SB, RAJU R, BIAN XY, ZHANG YM, MÜLLER R. Genetic engineering and heterologous expression of the disorazol biosynthetic gene cluster via Red/ET recombineering[J]. Scientific Reports, 2016, 6:21066.
    [76] 卢智勇, 杨卓顺, 丁妍, 袁雅红, 王小莉, 于莉, 李东升. 利用Red/ET同源重组构建新型CCR5△32打靶载体[J]. 生物技术通讯, 2017, 28(4):415-421. LU ZY, YANG ZS, DING Y, YUAN YH, WANG XL, YU L, LI DS. Construction of CCR5△32 targeting vector with Red/ET homologous recombination[J]. Letters in Biotechnology, 2017, 28(4):415-421 (in Chinese).
    [77] 张亮, 吕翠, 段彩琛, 王运生, 黄军, 杜杰, 戴良英, 黎定军, 刘清术, 陈武. 转录调控因子AbrB对生防短短芽胞杆菌X23中抗生素edeines生物合成的影响[J]. 中国生物防治学报, 2020, 36(4):564-574. ZHANG L, LÜ C, DUAN CC, WANG YS, HUANG J, DU J, DAI LY, LI DJ, LIU QS, CHEN W. Effect of transcription factor AbrB on the biosynthesis of antibiotic edeines in biocontrol bacteria Brevibacillus brevis X23[J]. Chinese Journal of Biological Control, 2020, 36(4):564-574 (in Chinese).
    [78] SU C, ZHAO XQ, WANG HN, QIU RG, TANG L. Seamless stitching of biosynthetic gene cluster containing type I polyketide synthases using Red/ET mediated recombination for construction of stably co-existing plasmids[J]. Gene, 2015, 554(2):233-240.
    [79] FU J, BIAN XY, HU S, WANG HL, HUANG F, SEIBERT PM, PLAZA A, XIA LQ, Müller R, STEWART AF, ZHANG Y. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30(5):440-446.
    [80] LIU QS, SHEN QY, BIAN XY, CHEN HN, FU J, WANG HL, LEI P, GUO ZH, CHEN W, LI DJ, Zhang YM. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering[J]. Scientific Reports, 2016, 6:34623.
    [81] BIAN XY, FU J, PLAZA A, HERRMANN J, PISTORIUS D, STEWART AF, ZHANG YM, MÜLLER R. In vivo evidence for a prodrug activation mechanism during colibactin maturation[J]. ChemBioChem:a European Journal of Chemical Biology, 2013, 14(10):1194-1197.
    [82] RUTLEDGE PJ, CHALLIS GL. Discovery of microbial natural products by activation of silent biosynthetic gene clusters[J]. Nature Reviews Microbiology, 2015, 13(8):509-523.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GAO Huahua, HU Juan, LIU Lingli. Research progress and challenges in cloning large gene clusters[J]. Microbiology China, 2023, 50(1): 351-367

Copy
Share
Article Metrics
  • Abstract:393
  • PDF: 2448
  • HTML: 1291
  • Cited by: 0
History
  • Received:April 02,2022
  • Revised:August 10,2022
  • Online: January 03,2023
Article QR Code