Screening and identification of cellulose/lignin-degrading strains against plant pathogenic fungi
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [37]
  • | | | |
  • Comments
    Abstract:

    [Background] While improving soil fertility and nutrients, straw returning faces the challenge of slow straw degradation and threat of pathogenic fungi. [Objective] To screen efficient straw-degrading strains against the fungi from samples in areas with long-term straw returning. [Methods] The isolation by dilution in liquid, aniline blue staining, and Congo red staining were used to screen the efficient straw-degrading strains and the strains were identified based on 16S rRNA gene sequencing and phylogeny analysis. The inhibition of the screened straw-degrading strains on Setostphaeria turcica, Alternaria kikuchiana, Alternaria solani, and Alternaria alternate aCCC38230 and aCCC38231 was examined by the confrontation assay. Moreover, the ability of the metabolites of the antagonistic strains against S. turcica was determined, and the influence of the strains on conidial germination and hypha growth of S. turcica was detected with crude extract of antagonistic strains. [Results] Three efficient cellulose/lignin-degrading strains were screened out and named as JY122, ZY133, and JY215, which all belong to Bacillus. Phylogeny analysis revealed 99.4% similarity between JY122 and Bacillus cereus, 100% similarity between ZY133 and Bacillus subtilis, and 99.1% similarity between JY215 and Bacillus velezensis. The three had strong inhibitory effect on pathogenic fungi of different species with the inhibition rate in the range of 43.74%-67.54%. In addition, the metabolites of them showed antifungal activity and strong thermal stability, as the antifungal activity was still high after treatment at 95 ℃. [Conclusion] JY122, ZY133, and JY215 show high efficiency in degrading cellulose/lignin and inhibit the growth of a variety of plant pathogenic fungi. The metabolites of the three have strong antifungal ability and high thermal stability. This study provides strain resources for returning maize straw and a method for tackling the challenges in straw returning.

    Reference
    [1] PALM C, BLANCO-CANQUI H, de CLERCK F, GATERE L, GRACE P. Conservation agriculture and ecosystem services:an overview[J]. Agriculture, Ecosystems & Environment, 2014, 187:87-105.
    [2] KUANG EJ, CHI FQ, JENG AS, SU QR, ZHANG JM. A comparison of different methods of decomposing maize straw in China[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2014, 63(sup2):186-194.
    [3] 刘俊丽. 玉米秸秆还田的优势及技术探析[J]. 种子科技, 2019, 37(8):57-57, 61. LIU JL. Advantages and techniques of returning corn straw to field[J]. Seed Science & Technology, 2019, 37(8):57-57, 61 (in Chinese).
    [4] LI PP, HE C, LI G, DING P, LAN MM, GAO Z, JIAO YZ. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production[J]. Bioengineered, 2020, 11(1):251-260.
    [5] FU SF, WANG F, YUAN XZ, YANG ZM, LUO SJ, WANG CS, GUO RB. The thermophilic (55℃) microaerobic pretreatment of corn straw for anaerobic digestion[J]. Bioresource Technology, 2015, 175:203-208.
    [6] CHEN KJ, TANG JC, XU BH, LAN SL, CAO YK. Degradation enhancement of rice straw by co-culture of Phanerochaete chrysosporium and Trichoderma viride[J]. Scientific Reports, 2019, 9:19708.
    [7] CHEN XL, YU J, ZHANG ZB, LU CH. Study on structure and thermal stability properties of cellulose fibers from rice straw[J]. Carbohydrate Polymers, 2011, 85(1):245-250.
    [8] 张崎峰. 玉米秸秆还田存在的问题及对策[J]. 中国西部科技, 2014, 13(3):73, 126. ZHANG QF. Problems and countermeasures of straw returning[J]. Science and Technology of West China, 2014, 13(3):73, 126 (in Chinese).
    [9] 李钦存. 玉米秸秆还田的负面效应及解决途径[J]. 基层农技推广, 2014, 2(8):44-45. LI QC. Negative effects of returning corn straw to field and solutions[J]. Primary Agricultural Technology Extension, 2014, 2(8):44-45 (in Chinese).
    [10] 石祖梁, 刘璐璐, 王飞, 李想, 常志州. 我国农作物秸秆综合利用发展模式及政策建议[J]. 中国农业科技导报, 2016, 18(6):16-22. SHI ZL, LIU LL, WANG F, LI X, CHANG ZZ. Development model and policy proposal for comprehensive utilization of crop straw in China[J]. Journal of Agricultural Science and Technology, 2016, 18(6):16-22 (in Chinese).
    [11] YANG HS, ZHAI SL, LI YF, ZHOU JJ, HE RY, LIU J, XUE YG, MENG YL. Waterlogging reduction and wheat yield increase through long-term ditch-buried straw return in a rice-Wheat rotation system[J]. Field Crops Research, 2017, 209:189-197.
    [12] 蔡武宁, 何艳丽, 朱坤, 王红丽. 秸秆全面禁烧后的病虫害防控[J]. 现代农业科学, 2009, 16(3):170-171. CAI WN, HE YL, ZHU K, WANG HL. How to strengthen the control of diseases and pests after overall burning of straw[J]. Modern Agricultural Sciences, 2009, 16(3):170-171 (in Chinese).
    [13] 马海英. 谈玉米秸秆还田与小麦病虫害防治配套技术措施[J]. 农家参谋, 2019(13):76. MA HY. Discussion on supporting technical measures of corn straw returning to field and wheat pest control[J]. The Farmers Consultant, 2019(13):76 (in Chinese).
    [14] 黄金枝, 胡桂萍, 俞燕芳, 杜贤明, 石旭平, 王军文. 微生物在农业废弃物堆肥应用中的研究进展[J]. 广东农业科学, 2019, 46(1):64-70. HUANG JZ, HU GP, YU YF, DU XM, SHI XP, WANG JW. Research progress of microbe in agricultural waste composting[J]. Guangdong Agricultural Sciences, 2019, 46(1):64-70 (in Chinese).
    [15] MA JS, ZHANG KK, HUANG M, HECTOR SB, LIU B, TONG CY, LIU Q, ZENG JR, GAO Y, XU T, LIU Y, LIU XM, ZHU YH. Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1[J]. Biotechnology for Biofuels, 2016, 9(1):211.
    [16] WANG X, WANG XX, GENG P, YANG Q, CHEN K, LIU N, FAN YL, ZHAN XM, HAN XR. Effects of different returning method combined with decomposer on decomposition of organic components of straw and soil fertility[J]. Scientific Reports, 2021, 11:15495.
    [17] Jokela J, Pellinen J, Salkinoja-Salonen M. Initial steps in the pathway for bacterial degradation of two tetrameric lignin model compounds[J]. Applied and Environmental Microbiology, 1987, 53(11):2642-2649.
    [18] Kumar L, Rathore V, Srivastava H. 14C-[lignin]-lignocellulose biodegradation by bacteria isolated from polluted soil[J]. Indian Journal of Experimental Biology, 2001, 39(6):584-589.
    [19] Raj A, Krishna Reddy MM, Chandra R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp[J]. International Biodeterioration & Biodegradation, 2007, 59(4):292-296.
    [20] Sapapporn N, Chaijamrus S, Chatdumrong W, Tochampa W. Degradation and polymerization of black liquor lignin using Bacillus sp. isolated from a pulp mill[J]. BioResources, 2018, 14(1):1049-1076.
    [21] 游景茂, 熊坤, 穆森, 郭杰, 郭晓亮, 段媛媛, 李娟, 曹凡, 邹宗成, 谭海. 内生细菌BZJN1的鉴定及对白术根腐病的生物防治研究[J]. 中国中药杂志, 2018, 43(3):478-483. YOU JM, XIONG K, MU S, GUO J, GUO XL, DUAN YY, LI J, CAO F, ZOU ZC, TAN H. Identification of endophytic bacteria BZJN1 and research on biological control of root rot of Atractylodes macrocephala[J]. China Journal of Chinese Materia Medica, 2018, 43(3):478-483 (in Chinese).
    [22] 徐莹莹, 王俊河, 刘玉涛, 高盼, 王宇先, 杨慧莹, 于侃超, 葛选良, 迟莉, 樊景胜. 秸秆不同还田方式对土壤物理性状、玉米产量的影响[J]. 玉米科学, 2018, 26(5):78-84. XU YY, WANG JH, LIU YT, GAO P, WANG YX, YANG HY, YU KC, GE XL, CHI L, FAN JS. Effects of different returning methods of straw on soil physical property, yield of corn[J]. Journal of Maize Sciences, 2018, 26(5):78-84 (in Chinese).
    [23] 孟建宇, 陈勿力吉玛, 郭慧琴, 冯福应, 陈玉萍. 常温和低温纤维素降解菌的分离及其降解特性[J]. 农业生物技术学报, 2021, 29(1):73-84. MENG JY, CHEN W, GUO HQ, FENG FY, CHEN YP. Isolation and degradation characteristics of cellulose-degradation bacteria at room and low temperature[J]. Journal of Agricultural Biotechnology, 2021, 29(1):73-84 (in Chinese).
    [24] 白洪志. 降解纤维素菌种筛选及纤维素降解研究[D]. 哈尔滨:哈尔滨工业大学博士学位论文, 2008. BAI HZ. Screening of cellulose degradation fungi and the study of its degradation characteristics[D]. Harbin:Doctoral Dissertation of Harbin Institute of Technology, 2008 (in Chinese)
    [25] ZENG FL, MENG YN, HAO ZM, LI P, ZHAI WB, SHEN S, CAO ZY, DONG JG. Setosphaeria turcica ATR turns off appressorium-mediated maize infection and triggers melanin-involved self-protection in response to genotoxic stress[J]. Molecular Plant Pathology, 2020, 21(3):401-414.
    [26] 李慧君. 秸秆纤维素降解菌的筛选及其利用研究[D]. 杨凌:西北农林科技大学硕士学位论文, 2010. LI HJ. The filtration and use of microorganism with cornstalk-fibre catabolism ability[D]. Yangling:Master's Thesis of Northwest A&F University, 2010 (in Chinese)
    [27] 王华, 刘小刚, 罗华, 杨光. 木质素降解菌筛选及葡萄枝条木质素降解研究[J]. 西北农业学报, 2009, 18(5):302-305, 311. WANG H, LIU XG, LUO H, YANG G. Screening of lignin-degrading fungi and study of lignin degradation of vineyard pruning[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2009, 18(5):302-305, 311 (in Chinese).
    [28] 黄建凤, 张发宝, 逄玉万, 黄巧义, 唐拴虎, 付弘婷, 杨苞梅. 两株香蕉枯萎病拮抗细菌的筛选及抑菌机 理[J]. 微生物学通报, 2017, 44(4):835-844. HUANG JF, ZHANG FB, PANG YW, HUANG QY, TANG SH, FU HT, YANG BM. Inhibition of banana Fusarium wilt by two biocontrol agents[J]. Microbiology China, 2017, 44(4):835-844 (in Chinese).
    [29] 杨帆, 李新民, 刘春来, 王爽, 夏吉星, 王克勤, 刘兴龙, 邵天玉, 徐充. 解淀粉芽孢杆菌抑菌活性初步研 究[J]. 黑龙江农业科学, 2015(9):55-59. YANG F, LI XM, LIU CL, WANG S, XIA JX, WANG KQ, LIU XL, XU C. Study on antifungal substance produced by Bacillus amyloliquefaciens[J]. Heilongjiang Agricultural Sciences, 2015(9):55-59 (in Chinese).
    [30] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. DONG XZ, CAI MY. Handbook of Identification of Common Bacterial Systems[M]. Beijing:Science Press, 2001 (in Chinese).
    [31] 仇艳肖. 黄瓜灰霉病高效拮抗菌的筛选鉴定及其作用研究[D]. 石家庄:河北师范大学硕士学位论文, 2012. QIU YX. Study on screening, identification and effect of efficient antagonistic bacteria against Botrytis cinerea[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2012 (in Chinese).
    [32] 张新杰, 刘彦策, 钱欣雨, 肖生林, 于波, 董金皋, 郝志敏. 弯曲平脐蠕孢拮抗细菌的筛选、鉴定及拮抗作用[J]. 微生物学通报, 2020, 47(8):2417-2424. ZHANG XJ, LIU YC, QIAN XY, XIAO SL, YU B, DONG JG, HAO ZM. Isolation, identification and characterization of an antagonistic bacterium against Bipolaris papendorfii[J]. Microbiology China, 2020, 47(8):2417-2424 (in Chinese).
    [33] 刘彦策, 王会敏, 钱欣雨, 李慧颖, 申珅, 郝志敏, 董金皋. 玉米内生菌L10的分离、鉴定及拮抗活性[J]. 植物保护学报, 2021, 48(3):630-637. LIU YC, WANG HM, QIAN XY, LI HY, SHEN S, HAO ZM, DONG JG. Isolation, identification and antagonistic activity of maize endophyte L10[J]. Journal of Plant Protection, 2021, 48(3):630-637 (in Chinese).
    [34] 李永丽, 周洲, 曲良建, 尹新明. 贝莱斯芽孢杆菌Pm9生物防治潜力及全基因组分析[J]. 河南农业大学学报, 2021, 55(6):1081-1088. LI YL, ZHOU Z, QU LJ, YIN XM. Biological control potential and complete genome analysis of Bacillus velezensis Pm9[J]. Journal of Henan Agricultural University, 2021, 55(6):1081-1088 (in Chinese).
    [35] Domański J, Marchut-Mikołajczyk O, Cieciura-Włoch W, Patelski P, Dziekońska-Kubczak U, Januszewicz B, Zhang BL, Dziugan P. Production of methane, hydrogen and ethanol from Secale cereale L. straw pretreated with sulfuric acid[J]. Molecules, 2020, 25(4):1013.
    [36] 侯金丽. 微生物技术在秸秆转化利用中的应用研究进展[J]. 中国西部科技, 2015, 14(3):72-73. HOU JL. Applied research progress of microbial technologies in straw conversion and utilization[J]. Science and Technology of West China, 2015, 14(3):72-73 (in Chinese).
    [37] Rehman N, de Miranda MIG, Rosa SML, Pimentel DM, Nachtigall SMB, Bica CID. Cellulose and nanocellulose from maize straw:an insight on the crystal properties[J]. Journal of Polymers and the Environment, 2014, 22(2):252-259.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Xinjie, ZHOU Xingrui, SUN Huiying, MENG Ya'nan, ZENG Fanli. Screening and identification of cellulose/lignin-degrading strains against plant pathogenic fungi[J]. Microbiology China, 2023, 50(1): 251-261

Copy
Share
Article Metrics
  • Abstract:407
  • PDF: 986
  • HTML: 1058
  • Cited by: 0
History
  • Received:March 11,2022
  • Revised:July 17,2022
  • Online: January 03,2023
Article QR Code