Impact of Streptomyces sp. TOR3209 on culturable endophytic bacteria of tomato roots and stems under low temperature
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [45]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Low temperature is the main obstacle factor affecting the stable and high yield of tomato in solar-energy greenhouse in northern China. We found that Streptomyces sp. TOR3209 improved the cold tolerance of tomato plants. [Objective] To explore whether the impact of strain TOR3209 on improving resistance to cold stress of tomato plants is related to their endophytic bacterial community structure and property. [Methods] Tomato roots were inoculated with strain TOR3209 in substrate culture, and cultured under low temperature (5 ℃) and mild temperature (25 ℃) separately. Traditional culture-dependent methods were used to isolate and identify bacteria, and the effects of strain TOR3209 on the composition and structure of the root and stem bacterial community were analyzed by 16S rRNA gene amplicon sequencing technology. [Results] In this study, 69 species of endophytic bacteria belonging to 28 genera, 20 families and 4 phyla were isolated. Compared to the conditions in the control group, the Shannon index and Margalef index of the endophytic bacterial community of tomato roots and stems inoculated with strain TOR3209 were increased under low and mild temperatures. At phylum level, the relative abundance of Firmicutes was increased, while that of Proteobacteria and Bacteriodetes was decreased; at genus level, the relative abundance of Bacillus was boosted, while that of Pseudomonas and Flavobacterium was reduced; at species level, after treatment with strain TOR3209, the relative abundance of Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus aryabhattai was elevated significantly. Under both temperatures of 5 ℃ and 25 ℃, Bacillus wiedmannii, Brevibacterium frigoritolerans and Acinetobacter johnsonii were isolated from the tomato plants inoculated with strain TOR3209, and the experiment demonstrated that the three bacteria are plant-beneficial and cold-adapted, and can markedly increase the heights, leaf areas and biomasses of tomato plants; especially B. frigoritolerans treatment had the most obvious effect on the biomass. Compared with the conditions in the control group, fresh weight of root and shoot rose by 55.13% and 51.03%, respectively, and dry weight rose by 48.37% and 50.95%, respectively. The pathogenic bacteria such as Pantoea agglomerans, Pseudomonas mediterranea and Pseudomonas corrugate were not isolated. [Conclusion] Inoculation with strain TOR3209 impacted the composition and structure of the bacterial community in tomato roots and stems. The relative abundance of indigenous cold-adapted and beneficial microorganisms was increased, and the pathogenic bacteria was decreased, which improved plant cold tolerance.

    Reference
    [1] 孙佳瑞, 胡栋, 张翠绵, 贾楠, 黄石, 赵晨颖, 王占武. 链霉菌S506对番茄苗生长和冷害生理生化的影响[J]. 中国农学通报, 2012, 28(31):167-171. SUN JR, HU D, ZHANG CM, JIA N, HUANG S, ZHAO CY, WANG ZW. Effects of Streptomyces S506 on growth and cold injury physiology and biochemistry of tomato seedlings under cold stress[J]. Chinese Agricultural Science Bulletin, 2012, 28(31):167-171 (in Chinese).
    [2] AROCA R, PORCEL R, RUIZ-LOZANO JM. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?[J]. The New Phytologist, 2007, 173(4):808-816.
    [3] ROSENBLUETH M, MARTÍNEZ-ROMERO E. Bacterial endophytes and their interactions with hosts[J]. Molecular Plant-Microbe Interactions, 2006, 19(8):827-837.
    [4] 程志强, 雷少楠, 熊娟, 马荣琴, 陈优优, 李容丹, 路晶晶, 吴寒, 龚玉杰, 田宝玉. 番茄根内生芽孢杆菌的多样性和系统发育研究[J]. 中国农学通报, 2018, 34(8):37-45. CHENG ZQ, LEI SN, XIONG J, MA RQ, CHEN YY, LI RD, LU JJ, WU H, GONG YJ, TIAN BY. Diversity and phylogenetic analysis of root endophytic Bacillus in tomato[J]. Chinese Agricultural Science Bulletin, 2018, 34(8):37-45 (in Chinese).
    [5] AZEVEDO JL, ARAÚJo WL, LACAVA PT. The diversity of citrus endophytic bacteria and their interactions with Xylella fastidiosa and host plants[J]. Genetics and Molecular Biology, 2016, 39(4):476-491.
    [6] WEST ER, COTHER EJ, STEEL CC, ASH GJ. The characterization and diversity of bacterial endophytes of grapevine[J]. Canadian Journal of Microbiology, 2010, 56(3):209-216.
    [7] 冯杭, 段栌钦, 杨利平, 周岗泉, 刘琼光. 不同青枯病抗性的番茄品种内生细菌生理群数量研究[J]. 微生物学通报, 2008, 35(8):1255-1261. FENG H, DUAN LQ, YANG LP, ZHOU GQ, LIU QG. Study on population of bacterial physiological groups in tomato with different resistance to Ralstonia solanacearum[J]. Microbiology China, 2008, 35(8):1255-1261 (in Chinese).
    [8] 杨多, 岳海涛, 伍杰毅, 赵鲁玉, 邢祥祥, 郭飞, 杨洁. 胡杨叶片及韧皮部内生细菌多样性及生物学功能分析[J]. 微生物学报, 2022, 62(1):213-226. YANG D, YUE HT, WU JY, ZHAO LY, XING XX, GUO F, YANG J. Diversity and biological function of endophytic bacteria in Populus euphratica leaves and phloem[J]. Acta Microbiologica Sinica, 2022, 62(1):213-226 (in Chinese).
    [9] 李爽, 左尚武, 王万清, 王金嵩, 权成伟, 朱雪竹. 菌株Serratia sp. PW7不同定殖方式对黑麦草中芘污染去除及其内生菌群的影响[J]. 农业环境科学学报, 2018, 37(12):2755-2764. LI S, ZUO SW, WANG WQ, WANG JS, QUAN CW, ZHU XZ. Determining the effects of Serratia sp. PW7 on pyrene removal and the endophytic bacterial community in ryegrass (Lolium multiflorum L.) via different inoculation methods[J]. Journal of Agro-Environment Science, 2018, 37(12):2755-2764 (in Chinese).
    [10] HU D, LI XZ, CHANG YL, HE H, ZHANG CM, JIA N, LI HT, WANG ZW. Genome sequence of Streptomyces sp. strain TOR3209, a rhizosphere microecology regulator isolated from tomato rhizosphere[J]. Journal of Bacteriology, 2012, 194(6):1627.
    [11] HU D, LI SH, LI Y, PENG JL, WEI XY, MA J, ZHANG CM, Jia N, WANG ET, WANG ZW. Streptomyces sp. strain TOR3209:a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community[J]. Scientific Reports, 2020, 10:20132.
    [12] van OEVELEN S, de WACHTER R, ROBBRECHT E. Induction of a crippled phenotype in Psychotria (Rubiaceae) upon loss of the bacterial endophyte[J]. Bulgarian Journal of Plant Physiology, 2003:242-247.
    [13] 许明双. 番茄和水稻种子可培养内生细菌的多样性分析及促生菌功能研究[D]. 北京:中国农业大学博士学位论文, 2014. XU MS. Culturable bacterial community compositions from seeds of tomato and rice and function of plant growth promoting endophytic bacteria[D]. Beijing:Doctoral Dissertation of China Agricultural University, 2014 (in Chinese).
    [14] 孙创, 王金燕, 张钰琳, 张蕴慧, 朱晓雨, 陈朝晖, 张晓华. 利用改良培养基探究西太平洋海水可培养细菌多样性[J]. 微生物学报, 2021, 61(4):845-861. SUN C, WANG JY, ZHANG YL, ZHANG YH, ZHU XY, CHEN ZH, ZHANG XH. Exploring the diversity of cultivated bacteria in the western Pacific waters through improved culture media[J]. Acta Microbiologica Sinica, 2021, 61(4):845-861 (in Chinese).
    [15] ZHANG NL, WAN SQ, LI LH, BI J, ZHAO MM, MA KP. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China[J]. Plant and Soil, 2008, 311(1):19-28.
    [16] 柴阳阳. DBP对蔬菜叶际、根际微生物和内生菌群落结构的影响[D]. 青岛:青岛科技大学硕士学位论文, 2018. CHAI YY. Effects of DBP on the community structure of phyllosphere, rhizospheres microorganisms and endophytes of vegetables[D]. Qingdao:Master's Thesis of Qingdao University of Science & Technology, 2018 (in Chinese).
    [17] 方素云, 王振中. 三种杀菌剂对黄瓜内生细菌群落多样性的影响[J]. 植物保护, 2011, 37(3):52-57, 98. FANG SY, WANG ZZ. Effects of three kinds of fungicides on endophytic bacterial communities in cucumber plants[J]. Plant Protection, 2011, 37(3):52-57, 98 (in Chinese).
    [18] 沙月霞, 沈瑞清. 芽胞杆菌浸种对水稻内生细菌群落结构的影响[J]. 生态学报, 2019, 39(22):8442-8451. SHA YX, SHEN RQ. Impact of seed soaked by Bacillus on endophytic bacterial community structure of rice[J]. Acta Ecologica Sinica, 2019, 39(22):8442-8451 (in Chinese).
    [19] AFZAL M, YOUSAF S, REICHENAUER TG, SESSITSCH A. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil[J]. International Journal of Phytoremediation, 2012, 14(1):35-47.
    [20] 王美琴, 刘慧平, 韩巨才, 路涛. 番茄内生细菌种群动态分析及拮抗菌株的筛选[J]. 中国农学通报, 2010, 26(9):277-282. WANG MQ, LIU HP, HAN JC, LU T. Population dynamics of endophytic bacteria in tomato plant and screening of antagonistic strains[J]. Chinese Agricultural Science Bulletin, 2010, 26(9):277-282 (in Chinese).
    [21] 王玲玲, 尚庆茂, 董春娟. 番茄附生和内生细菌分离与群落相似性分析[J]. 生物技术通报, 2018, 34(7):147-153. WANG LL, SHANG QM, DONG CJ. Isolation and similarity analysis of epiphytic and endophytic bacteria in different tissues of tomato plants[J]. Biotechnology Bulletin, 2018, 34(7):147-153 (in Chinese).
    [22] 张德锋, 高艳侠, 王亚军, 刘春, 石存斌. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11):3634-3649. ZHANG DF, GAO YX, WANG YJ, LIU C, SHI CB. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiology China, 2020, 47(11):3634-3649 (in Chinese).
    [23] 陈倩倩, 刘波, 王阶平, 车建美, 刘国红, 龚海艳, 关雄. 芽胞杆菌FJAT-28592抗真菌脂肽的研究[J]. 农业生物技术学报, 2016, 24(2):261-269. CHEN QQ, LIU B, WANG JP, CHE JM, LIU GH, GONG HY, GUAN X. Anti-fungal lipopetides produced by Bacillus siamensis FJAT-28592[J]. Journal of Agricultural Biotechnology, 2016, 24(2):261-269 (in Chinese).
    [24] 林志楷, 林文珍. 暹罗芽孢杆菌研究进展[J]. 亚热带植物科学, 2019, 48(4):391-396. LIN ZK, LIN WZ. Research progress on Bacillus siamensis[J]. Subtropical Plant Science, 2019, 48(4):391-396 (in Chinese).
    [25] ELLEUCH J, JAOUA S, DARRIET F, CHANDRE F, TOUNSI S, ZGHAL RZ. Cry4Ba and Cyt1Aa proteins from Bacillus thuringiensis israelensis:interactions and toxicity mechanism against Aedes aegypti[J]. Toxicon:Official Journal of the International Society on Toxinology, 2015, 104:83-90.
    [26] 胡飞, 李昌春, 周子燕, 胡本进, 徐丽娜, 郑进国. 多粘类芽胞杆菌DN-1防治水稻纹枯病初步研究[J]. 中国生物防治学报, 2015, 31(4):524-528. HU F, LI CC, ZHOU ZY, HU BJ, XU LN, ZHENG JG. Preliminary study on Paenibacillus polymyxa DN-1 controlling rice sheath blight in rice[J]. Chinese Journal of Biological Control, 2015, 31(4):524-528 (in Chinese).
    [27] 闫凯丽, 郑君健, 王志伟, 吴志超. 膜生物反应器降解对氨基苯磺酸的性能及微生物群落特征[J]. 环境科学研究, 2017, 30(9):1433-1439. YAN KL, ZHENG JJ, WANG ZW, WU ZC. Sulfanilic acid biodegradation and resulting microbial communities using membrane bioreactor[J]. Research of Environmental Sciences, 2017, 30(9):1433-1439 (in Chinese).
    [28] 李戈. 阿特拉津厌氧降解菌的筛选鉴定及其降解特性研究[D]. 泰安:山东农业大学硕士学位论文, 2018. LI G. Isolation of anaerobic degrading bacteria of atrazine in soil and studies on the degrading characteristics[D]. Taian:Master's Thesis of Shandong Agricultural University, 2018 (in Chinese).
    [29] 蔡训辉, 王如意, 胡胜男, 李盈, 周玮. 鞘氨醇杆菌的研究进展[J]. 基因组学与应用生物学, 2020, 39(5):2096-2102. CAI XH, WANG RY, HU SN, LI Y, ZHOU W. Research progress of Sphingo bacterium[J]. Genomics and Applied Biology, 2020, 39(5):2096-2102 (in Chinese).
    [30] 曲丹, 赵勇胜, 任何军, 周睿. 一株新的Pseudomonas thivervalensis MATH1 BTEX降解及脱氮能力[J]. 中国科技论文, 2016, 11(21):2502-2508. QU D, ZHAO YS, REN HJ, ZHOU R. BTEX biodegradation and its nitrogen removal potential by a newly isolated Pseudomonas thivervalensis MATH1[J]. China Sciencepaper, 2016, 11(21):2502-2508 (in Chinese).
    [31] 陈晶瑜, 曹明, 庞晓娜, 韩北忠. 一株高效降解氰戊菊酯的酯香微杆菌及其应用:中国, CN108410760A[P]. 2018-08-17. CHEN JY, CAO M, PANG XN, HAN BZ. Microbacterium esteraromaticum for efficiently degrading fenvalerate and application thereof:China, CN108410760A[P]. 2018-08-17 (in Chinese).
    [32] 陈鹏, 甘桂云, 汪茜, 罗艳, 王先裕. 番茄细菌性髓部坏死病研究进展[J]. 中国瓜菜, 2021, 34(5):8-14. CHEN P, GAN GY, WANG Q, LUO Y, WANG XY. Research progress of tomato pith necrosis[J]. China Cucurbits and Vegetables, 2021, 34(5):8-14 (in Chinese).
    [33] TRANTAS EA, SARRIS PF, PENTARI MG, MPALANTINAKI EE, VERVERIDIS FN, GOUMAS DE. Diversity among Pseudomonas corrugate and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece[J]. Plant Pathology, 2015, 64(2):307-318.
    [34] PEKHTEREVA ES, KORNEV KP, MATVEEVA EV, POLITYKO VA, BUDENKOV NI, IGNATOV AN, SCHAAD NW. Pith necrosis of tomato in Russia[J]. Acta Horticulturae, 2009(808):251-254.
    [35] 何斐, 张忠良, 刘列平, 崔鸣, 薛泉宏. 刺槐林魔芋健康高产的土壤微生态机制[J]. 西北植物学报, 2015, 35(2):364-372. HE F, ZHANG ZL, LIU LP, CUI M, XUE QH. Microecological mechanism for healthy growth and higher yield of Amorphophallus konjac under Acacia forest[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(2):364-372 (in Chinese).
    [36] 袁雪梅, 葛明峰, 安树伟, 张继挺, 陶震, 王国良. 大黄鱼致病香鱼假单胞菌对环境因子的响应及其感染检测的分析[J]. 应用海洋学学报, 2015, 34(4):549-553. YUAN XM, GE MF, AN SW, ZHANG JT, TAO Z, WANG GL. Response of Pseudomonas plecoglossicida to environmental factors and detection of infection in farmed Pseudosciaena crocea[J]. Journal of Applied Oceanography, 2015, 34(4):549-553 (in Chinese).
    [37] WU HJ, GU Q, XIE YL, LOU ZY, XUE PQ, FANG L, YU CJ, JIA DD, HUANG GC, ZHU BC, SCHNEIDER A, BLOM J, LASCH P, BORRISS R, GAO XW. Cold-adapted Bacilli isolated from the Qinghai-Tibetan Plateau are able to promote plant growth in extreme environments[J]. Environmental Microbiology, 2019, 21(9):3505-3526.
    [38] 张喆. 牛粪堆肥低温启动复合菌剂研制及其效果评价[D]. 大连:大连理工大学硕士学位论文, 2019. ZHANG Z. Preparation and evaluation of the low-temperature fermenting compound microbial agent for cattle manure composting[D]. Dalian:Master's Thesis of Dalian University of Technology, 2019 (in Chinese).
    [39] WANG HK, WANG XJ, LI XL, ZHANG YH, DAI YJ, GUO CL, ZHENG H. QSAR study and the hydrolysis activity prediction of three alkaline lipases from different lipase-producing microorganisms[J]. Lipids in Health and Disease, 2012, 11:124.
    [40] 苏丹. 约翰氏不动杆菌DBP-3低温生长特性及冷休克蛋白表达研究[D]. 长春:吉林大学硕士学位论文, 2016. SU D. Study of the growth characteristics under low temperature and expression of cold shock protein of Acinetobacter johnsonii strain DBP-3[D]. Changchun:Master's Thesis of Jilin University, 2016 (in Chinese).
    [41] KARIMI B, NOSRATI R, FAZLY BAZZAZ BS, MIRPOUR M, MALBOOBI M, OWLIA P. A comparative evaluation of freezing criteria and molecular characterization of epiphytic ice-nucleating (ice+) and non-ice-nucleating (ice-) Pseudomonas syringae and Pseudomonas fluorescens[J]. Journal of Plant Pathology, 2020, 102(1):169-178.
    [42] 黄晓琴, 张丽霞, 刘会香, 陈宗懋, 李多川. 抗茶树冰核细菌内生菌的筛选及鉴定[J]. 茶叶科学, 2015, 35(1):97-102. HUANG XQ, ZHANG LX, LIU HX, CHEN ZM, LI DC. Screening and identification of the endophytic bacterial strain against ice nucleation active bacteria of tea plant[J]. Journal of Tea Science, 2015, 35(1):97-102 (in Chinese).
    [43] LIU HW, LI JY, CARVALHAIS LC, PERCY CD, PRAKASH VERMA J, SCHENK PM, SINGH BK. Evidence for the plant recruitment of beneficial microbes to suppress soil-borne pathogens[J]. The New Phytologist, 2021, 229(5):2873-2885.
    [44] BHAVE SV, SHANBHAG PV, SONAWANE SK, PARAB RR, MAHAJAN GB. Isolation and characterization of halotolerant Streptomyces radiopugnans from Antarctica soil[J]. Letters in Applied Microbiology, 2013, 56(5):348-355.
    [45] HE YX, GUO WY, PENG JL, GUO JY, MA J, WANG X, ZHANG CM, JIA N, WANG ET, HU D, WANG ZW. Volatile organic compounds of Streptomyces sp. TOR3209 stimulated tobacco growth by up-regulating the expression of genes related to plant growth and development[J]. Frontiers in Microbiology, 2022, 13:891245.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

MA Jia, HU Dong, PENG Jieli, ZHANG Cuimian, JIA Nan, WANG Xu, WANG Yifan, WANG Zhanwu. Impact of Streptomyces sp. TOR3209 on culturable endophytic bacteria of tomato roots and stems under low temperature[J]. Microbiology China, 2023, 50(1): 194-217

Copy
Share
Article Metrics
  • Abstract:323
  • PDF: 904
  • HTML: 913
  • Cited by: 0
History
  • Received:March 29,2022
  • Revised:July 27,2022
  • Online: January 03,2023
Article QR Code