Bioinformatics and expression analyses of glycoside hydrolase 3 genes in Trichoderma asperellum
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [33]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] The glycoside hydrolase 3 gene (GH3) family mainly encodes extracellular β-glucosidases, which are the key enzymes in cellulose degradation. [Objective] To identify the GH3 genes in Trichoderma asperellum (TaGH3 genes) and investigate their transcriptional patterns. [Methods] The bioinformatics tools were employed to identify the TaGH3 genes and analyze the gene structure, phylogenetic relationship, as well as the physicochemical properties, subcellular localization, and tertiary structure of the deduced proteins. quantitative real-time polymerase chain reaction (RT-qPCR) was employed to investigate the transcriptional patterns of TaGH3 genes in the presence of cellulose. [Results] A total of 16 TaGH3 genes were identified, which contained 1-8 exons. The deduced TaGH3 proteins had the length of 533-934 amino acid (aa) and the theoretical molecular weights of 57.82-101.91 kDa. The majority of TaGH3 proteins were predicted to be extracellular. Phylogenetic analysis demonstrated that all the TaGH3 proteins could be classified into 4 clades, which had higher homology with Trichoderma reesei. Cellulose affected the transcription of all the 16 TaGH3 genes, while the transcription level varied among genes. Specifically, cellulose induced the constitutive expression of 1 gene, down-regulated the expression of 2 genes, and up-regulated the expression of 13 genes. Moreover, cellulose enhanced the extracellular β-glucosidase activity, which was consistent to the transcriptional pattern of most TaGH3 genes. [Conclusion] The genome of T. asperellum carried 16 GH3 genes, most of which encoded hydrophilic proteins with the potential for commercial exploitation. The transcription of the majority of TaGH3 genes was up-regulated by cellulose, which was consistent with the enhanced β-glucosidase activity, indicating that these genes played a key role in cellulose degradation. This study systematically investigated the GH3 genes in T. asperellum, providing new insights for the resource utilization of lignocellulosic materials and the construction of strains with high cellulase production.

    Reference
    [1] JØRGENSEN H, VIBE-PEDERSEN J, LARSEN J, FELBY C. Liquefaction of lignocellulose at high-solids concentrations[J]. Biotechnology and Bioengineering, 2007, 96(5):862-870.
    [2] LI DP, FENG L, LIU KR, CHENG Y, HOU N, LI CY. Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China[J]. Cellulose, 2016, 23(2):1335-1347.
    [3] 王晓涛, 魏佩玲, 胡波, 宫平. 纤维素降解酶研究进展[J]. 草食家畜, 2019(3):13-18. WANG XT, WEI PL, HU B, GONG P. Research progress on cellulose degrading enzymes[J]. Grass-Feeding Livestock, 2019(3):13-18 (in Chinese).
    [4] 曲音波. 木质纤维素降解酶系的基础和技术研究进展[J]. 山东大学学报(理学版), 2011, 46(10):160-170. QU YB. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation[J]. Journal of Shandong University (Natural Science), 2011, 46(10):160-170 (in Chinese).
    [5] GUSAKOV AV. Alternatives to Trichoderma reesei in biofuel production[J]. Trends in Biotechnology, 2011, 29(9):419-425.
    [6] 刘国栋, 高丽伟, 曲音波. 青霉生产木质纤维素降解酶系的研究进展[J]. 生物工程学报, 2021, 37(3):1058-1069. LIU GD, GAO LW, QU YB. Progress in the production of lignocellulolytic enzyme systems using Penicillium species[J]. Chinese Journal of Biotechnology, 2021, 37(3):1058-1069 (in Chinese).
    [7] van DYK JS, PLETSCHKE BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480.
    [8] SINGHANIA RR, PATEL AK, PANDEY A, GANANSOUNOU E. Genetic modification:a tool for enhancing beta-glucosidase production for biofuel application[J]. Bioresource Technology, 2017, 245:1352-1361.
    [9] 周庆新,戴炳业,陈蕾蕾,刘孝永,裘纪莹,陈相艳. 瑞氏木霉中β-葡萄糖苷酶基因功能研究进展[J]. 中国农业科技导报, 2014, 16(2):74-78. ZHOU QX, DAI BY, CHEN LL, LIU XY, QIU JY, CHEN XY. Progress on Function Studies of β-glucosidase gene in Trichoderma reesei[J]. Journal of Agricultural Science and Technology, 2014, 16(2):74-78 (in Chinese).
    [10] EZEILO UR, LEE CT, HUYOP F, ZAKARIA II, WAHAB RA. Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation[J]. Journal of Environmental Management, 2019, 243:206-217.
    [11] 周林芳, 江波, 张涛, 李淑华. 糖苷水解酶第3家族β-葡萄糖苷酶的研究进展[J]. 食品工业科技, 2017, 38(14):330-335. ZHOU LF, JIANG B, ZHANG T, LI SH. Research progress of β-glucosidases of glycoside hydrolase family 3[J]. Science and Technology of Food Industry, 2017, 38(14):330-335 (in Chinese).
    [12] 章初龙, 徐同. 我国河北、浙江、云南及西藏木霉种记述[J]. 菌物学报, 2005, 24(2):184-192. ZHANG CL, XU T. Records of trichoderma species from Hebei, Zhejiang, Yunan and Tibet of China[J]. Mycosystema, 2005, 24(2):184-192 (in Chinese).
    [13] 赵鹏. 棘孢木霉T4株task1基因过表达及功能的初步分析[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2014. ZHAO P. Preliminary analysis of Task1 gene from Trichoderma asperellum T4 over expression and function[D]. Harbin:Master's Thesis of Harbin Institute of Technology, 2014 (in Chinese).
    [14] SHANMUGAM S, KRISHNASWAMY S, CHANDRABABU R, VEERABAGU U, PUGAZHENDHI A, MATHIMANI T. Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass[J]. Fuel, 2020, 273:117777.
    [15] SINGH G, TIWARI A, GUPTA A, KUMAR A, HARIPRASAD P, SHARMA S. Bioformulation development via valorizing silica-rich spent mushroom substrate with Trichoderma asperellum for plant nutrient and disease management[J]. Journal of Environmental Management, 2021, 297:113278.
    [16] 高丽伟. 草酸青霉木质纤维素降解酶转录激活机制解析及高产菌株构建[D]. 济南:山东大学博士学位论文, 2018. GAO LW. Studies on the mechanisms for the transcriptional activation of lignocellulolytic enzyme genes in Penicillium oxalicum and the construction of enzyme high-producing strains[D]. Jinan:Doctoral Dissertation of Shandong University, 2018 (in Chinese).
    [17] 蔡英丽. 香菇木质纤维素降解酶在不同碳源上的表达模式分析[D]. 武汉:华中农业大学博士学位论文, 2017. CAI YL. Expression profiling analysis of lignocellulose degrading enzymes in Lentinula edodes grown on different carbon sources[D]. Wuhan:Doctoral Dissertation of Huazhong Agricultural University, 2017 (in Chinese).
    [18] HU B, JIN JP, GUO AY, ZHANG H, LUO JC, GAO G. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.
    [19] CHEN CJ, CHEN H, ZHANG Y, THOMAS HR, FRANK MH, HE YH, XIA R. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
    [20] BAILEY TL, BODEN M, BUSKE FA, FRITH M, GRANT CE, CLEMENTI L, REN JY, LI WW, NOBLE WS. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(suppl_2):W202-W208.
    [21] YU CS, LIN CJ, HWANG JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions[J]. Protein Science:a Publication of the Protein Society, 2004, 13(5):1402-1406.
    [22] 唐家全, 郝大志, 李婷婷, 张慧, 陈捷. 棘孢木霉菌对钠胁迫的生理响应机制[J]. 微生物学通报, 2021, 48(1):23-34. TANG JQ, HAO DZ, LI TT, ZHANG H, CHEN J. Physiological response of Trichoderma asperellum to Na+ stress[J]. Microbiology China, 2021, 48(1):23-34 (in Chinese).
    [23] SCHMITTGEN TD, LIVAK KJ. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6):1101-1108.
    [24] 姚卫蓉, 丁霄霖. pNPG法测定纤维素酶系中β-葡萄糖苷酶[J]. 微生物学通报, 1998, 25(3):182-183. YAO WR, DING XL. Determination of β-glucosidase in cellulase system by pNPG method[J]. Microbiology China, 1998, 25(3):182-183 (in Chinese).
    [25] D'INCECCO N, BARTOWSKY E, KASSARA S, LANTE AN, SPETTOLI P, HENSCHKE P. Release of glycosidically bound flavour compounds of Chardonnay by Oenococcus oeni during malolactic fermentation[J]. Food Microbiology, 2004, 21(3):257-265.
    [26] ZHAO XL, ZHENG ZH, CAI YF, ZHAO YB, ZHANG Y, GAO YH, CUI ZJ, WANG XF. Accelerated biomethane production from lignocellulosic biomass: pretreated by mixed enzymes secreted by Trichoderma viride and Aspergillus sp.[J]. Bioresource Technology, 2020, 309:123378.
    [27] 沈海默, 郑琪, 胡薇. 日本血吸虫组蛋白基因家族分子进化分析[J]. 国际医学寄生虫病杂志, 2015, 42(2):67-73. SHEN HM, ZHENG Q, HU W. Molecular evolution of the histone gene family in Schistosoma japonicum[J]. International Journal of Medical Parasitic Diseases, 2015, 42(2):67-73 (in Chinese).
    [28] 刘聪, 杜国英, 唐磊, 高天, 唐祥海, 莫照兰, 茅云翔. 紫菜腐霉激发子基因家族特征及其在感染过程中的作用[J]. 微生物学通报, 2022, 49(1):139-152. LIU C, DU GY, TANG L, GAO T, TANG XH, MO ZL, MAO YX. Characteristics of elicitin gene family of Pythium porphyrae and its role in infection[J]. Microbiology China, 2022, 49(1):139-152 (in Chinese).
    [29] TAMBOR JH, REN HN, USHINSKY S, ZHENG Y, RIEMENS A, ST-FRANCOIS C, TSANG A, POWLOWSKI J, STORMS R. Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-β-glucanases that efficiently hydrolyse cellulosic substrates[J]. Applied Microbiology and Biotechnology, 2012, 93(1):203-214.
    [30] MOONEY CA, MANSFIELD SD, TOUHY MG, SADDLER JN. The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods[J]. Bioresource Technology, 1998, 64(2):113-119.
    [31] BORGES DG, BARALDO A Jr, FARINAS CS, de LIMA CAMARGO GIORDANO R, TARDIOLI PW. Enhanced saccharification of sugarcane bagasse using soluble cellulase supplemented with immobilized β-glucosidase[J]. Bioresource Technology, 2014, 167:206-213.
    [32] 李培谦, 冯宝珍. 尖孢镰孢菌果胶裂解酶基因家族鉴定及侵染表达模式分析[J]. 微生物学通报, 2021, 48(8):2774-2783. LI PQ, FENG BZ. Characterization of pectate lyase gene family in Fusarium oxysporum f. sp. lycopersici genome and expression mode during inoculation[J]. Microbiology China, 2021, 48(8):2774-2783 (in Chinese).
    [33] MAEDA YT, SANO M. Regulatory dynamics of synthetic gene networks with positive feedback[J]. Journal of Molecular Biology, 2006, 359(4):1107-1124.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Cong, WANG Yun. Bioinformatics and expression analyses of glycoside hydrolase 3 genes in Trichoderma asperellum[J]. Microbiology China, 2023, 50(1): 1-12

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 12,2022
  • Revised:June 29,2022
  • Online: January 03,2023
Article QR Code