Microbial structure and functions in the second aerobic bioreactor of O/H/O coking wastewater treatment system
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [43]
  • | | | |
  • Comments
    Abstract:

    [Background] The second aerobic bioreactor O2 of the oxic-hydrolytic-oxic (O/H/O) system contributes to the biomineralization and complete nitrification of residual pollutants, which is important for the standard discharge of wastewater. [Objective] To elucidate the structure and functions of the microbial community in bioreactor O2. [Methods] The 16S rRNA gene was sequenced to investigate the microbial diversity and composition, predict the microbial functional pathways, and reveal the microbial co-occurrence and the environmental driving factors in bioreactor O2. [Results] Proteobacteria, Bacteroidetes, and Chlorobi were the dominant phyla in the bioreactor. Among the dominant genera, Rhodoplanes, Lysobacter, and Thiobacillus were involved in the degradation of residual pollutants, such as chemical oxygen demand (COD), phenols, and thiocyanate (SCN-), and Nitrosovibrio and Nitrospira were the ammonia-oxidizing bacteria (AOB) and the dominant nitrite-oxidizing bacteria (NOB), respectively. Functional profiling suggested that the benzoate degradation, aminobenzoate degradation, chloroalkane and chloroalkene degradation, eluorobenzoate degradation, and nitrotoluene degradation were the top five pathways in the xenobiotics biodegradation and metabolism. These major functional pathways were distributed widely in the dominant genera, implying their roles in biodegradation of residual pollutants. The pmoA / B / C-amoA / B / C, hao, and nxrA / B encoding related enzymes constituted the nitrification pathway. According to the result of microbial co-occurrence network, Lysobacter, Candidatus Solibacter, and Rhodoplanes occupied an important position in the O2 ecosystem. Redundancy analysis (RDA) suggested that the microbial community in the bioreactor was mainly affected by COD and NH3 [Conclusion] Rhodoplanes and Lysobacter were the key genera for biomineralization and ecological stability of the community. Nitrosovibrio and Nitrospira played an important part in nitrification. The metabolic pathways in O2 were dominated by biomineralization and complete nitrification of residual pollutants. COD and ammonia (NH3) were the main influencing environmental factors. This study illustrates the structure and functions of microorganisms in bioreactor O2, which is expected to lay a microbial basis for improving the treatment of coking wastewater by O/H/O system.

    Reference
    [1] Tamang M, Paul KK. Advances in treatment of coking wastewater-a state of art review[J]. Water Science and Technology, 2022, 85(1): 449-473
    [2] 潘建新. 废水处理脱氮自调节模式: OHO工艺实验及原理研究[D]. 广州: 华南理工大学博士学位论文, 2018 Pan JX. Self-regulation mode of nitrogen removal in wastewater treatment—study of experiments and principle on OHO process[D]. Guangzhou: Doctoral Dissertation of South China University of Technology, 2018(in Chinese)
    [3] Zhu S, Wu HZ, Wei CH, Zhou L, Xie JT. Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system[J]. Applied Microbiology and Biotechnology, 2016, 100(2): 949-960
    [4] 黄志强, 邱景璇, 李杰, 许东坡, 刘箐. 基于16S rRNA基因测序分析微生物群落多样性[J]. 微生物学报, 2021, 61(5): 1044-1063 Huang ZQ, Qiu JX, Li J, Xu DP, Liu Q. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J]. Acta Microbiologica Sinica, 2021, 61(5): 1044-1063(in Chinese)
    [5] Wu HZ, Wang M, Zhu S, Xie JT, Preis S, Li FS, Wei CH. Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater[J]. Chemosphere, 2019, 228: 128-138
    [6] Begmatov S, Dorofeev AG, Kadnikov VV, Beletsky AV, Pimenov NV, Ravin NV, Mardanov AV. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow[J]. Scientific Reports, 2022, 12: 3458
    [7] 李黔花, 李志华, 岳秀, 于广平, 王慧娟. 好氧颗粒污泥处理印染废水的效能及其微生物特征[J]. 工业水处理, 2020, 40(3): 43-48 Li QH, Li ZH, Yue X, Yu GP, Wang HJ. Efficiency and microbial characteristics of aerobic granular sludge for textile dyeing wastewater treatment[J]. Industrial Water Treatment, 2020, 40(3): 43-48(in Chinese)
    [8] Wei CH, Li ZM, Pan JX, Fu BB, Wei JY, Chen B, Yang XZ, Ye GJ, Wei C, Luo P, et al. An oxic–hydrolytic–oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS ES&T Water, 2021, 1(5): 1252-1262
    [9] 孙晓雪, 韦聪, 罗培, 杨兴舟, 叶国杰, 韦朝海, 彭亚环, 邱光磊, 平武臣. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 15(8): 2759-2769 Sun XX, Wei C, Luo P, Yang XZ, Ye GJ, Wei CH, Peng YH, Qiu GL, Ping WC. Feasibility test of OHO-MBR combined process for actual coking wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2759-2769(in Chinese)
    [10] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 第四版. 北京: 中国环境科学出版社, 2002 State Environmental Protection Administration of China. Monitoring and Analysis Methods for Water and Wastewater[M]. 4th ed. Beijing: China Environment Science Press, 2002(in Chinese)
    [11] Zhang T, Wei CH, Feng CH, Zhu JL. A novel airlift reactor enhanced by funnel internals and hydrodynamics prediction by the CFD method[J]. Bioresource Technology, 2012, 104: 600-607
    [12] Deng JS, Zhang BS, Xie JT, Wu HZ, Li ZM, Qiu GL, Wei CH, Zhu S. Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system[J]. PLoS One, 2020, 15(12): e0243748
    [13] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541
    [14] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336
    [15] Douglas G M, Maffei V J, Zaneveld J R, Yurgel S N, Brown J R, Taylor C M, Huttenhower C, Langille M G I. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-8.
    [16] Chen T, Liu YX, Huang LQ. ImageGP: an easy-to-use data visualization web server for scientific researchers[J]. iMeta, 2022: e5
    [17] Qiu GL, Zhang S, Srinivasa Raghavan DS, Das S, Ting YP. Towards high through-put biological treatment of municipal wastewater and enhanced phosphorus recovery using a hybrid microfiltration-forward osmosis membrane bioreactor with hydraulic retention time in sub-hour level[J]. Bioresource Technology, 2016, 219: 298-310
    [18] 宋国庆, 李辉, 马克, 赵雪莹, 沈忆文, 谢建辉, 周怀谷. 基于16S rRNA基因序列对不同土壤细菌群落的差异性分析[J]. 法医学杂志, 2019, 35(2): 187-193 Song GQ, Li H, Ma K, Zhao XY, Shen YW, Xie JH, Zhou HG. Difference analysis based on 16S rRNA sequencing of different soil bacterial communities[J]. Journal of Forensic Medicine, 2019, 35(2): 187-193(in Chinese)
    [19] 张凯煜, 谷洁, 王小娟, 高华. 微生物有机肥对樱桃园土壤细菌群落的影响[J]. 中国环境科学, 2019, 39(3): 1245-1252 Zhang KY, Gu J, Wang XJ, Gao H. Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J]. China Environmental Science, 2019, 39(3): 1245-1252(in Chinese)
    [20] Campbell BJ, Polson SW, Zeigler Allen L, Williamson SJ, Lee CK, Wommack KE, Cary SC. Diffuse flow environments within basalt-and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities[J]. Frontiers in Microbiology, 2013, 4: 182
    [21] 吕锡斌, 吴云成, 陈良强, 刘明庆, 杨帆, 王蒙蒙, 田伟, 王莉. 赤水河流域浮游细菌群落特征及其与水质的关系[J]. 环境科学学报, 2021, 41(11): 4596-4605 Lü XB, Wu YC, Chen LQ, Liu MQ, Yang F, Wang MM, Tian W, Wang L. Characteristics of the bacterioplankton community and their relationships with water quality in Chishui River Basin[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4596-4605(in Chinese)
    [22] 邓锦思. 焦化废水AOHO生物处理系统微生物群落的结构与功能研究[D]. 广州: 广东药科大学硕士学位论文, 2021 Deng JS. The structure and function of microbial communities in the coking wastewater AOHO biological treatment system[D]. Guangzhou: Master's Thesis of Guangdong Pharmaceutical University, 2021(in Chinese)
    [23] Cydzik-Kwiatkowska A, Zielińska M. Bacterial communities in full-scale wastewater treatment systems[J]. World Journal of Microbiology & Biotechnology, 2016, 32(4): 66
    [24] Tang P, Li JL, Li T, Tian L, Sun Y, Xie WC, He QP, Chang HQ, Tiraferri A, Liu BC. Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater[J]. Journal of Hazardous Materials, 2021, 405: 124166
    [25] Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial metabolic potential of phenol degradation in wastewater treatment plant of crude oil refinery: analysis of metagenomes and characterization of isolates[J]. Microorganisms, 2020, 8(5): 652
    [26] Hiras J, Wu YW, Eichorst SA, Simmons BA, Singer SW. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage[J]. The ISME Journal, 2016, 10(4): 833-845
    [27] Wu YX, Song QM, Wu JH, Zhou JY, Zhou LL, Wu WC. Field study on the soil bacterial associations to combined contamination with heavy metals and organic contaminants[J]. Science of the Total Environment, 2021, 778: 146282
    [28] Lee YY, Lee SY, Lee SD, Cho KS. Seasonal dynamics of bacterial community structure in diesel oil-contaminated soil cultivated with tall fescue (Festuca arundinacea)[J]. International Journal of Environmental Research and Public Health, 2022, 19(8): 4629
    [29] Huang C, Liu Q, Li ZL, Ma XD, Hou YN, Ren NQ, Wang AJ. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116526
    [30] 王彤, 汪涵, 周明达, 冉小川, 王伟刚, 吴敏, 王亚宜. 污水脱氮功能微生物的组学研究进展[J]. 微生物学通报, 2021, 48(12): 4844-4870 Wang T, Wang H, Zhou MD, Ran XC, Wang WG, Wu M, Wang YY. Advances in omics of functional microorganisms for nitrogen removal in wastewater[J]. Microbiology China, 2021, 48(12): 4844-4870(in Chinese)
    [31] 张亮, 于静仪, 李朝阳, 彭永臻. 污水生物处理系统中全程氨氧化菌的研究进展[J]. 北京工业大学学报, 2020, 46(4): 402-411 Zhang L, Yu JY, Li ZY, Peng YZ. Progress and prospects of the research of complete ammonia oxidizers in biological wastewater treatment[J]. Journal of Beijing University of Technology, 2020, 46(4): 402-411(in Chinese)
    [32] 张雪, 乔雪姣, 苏佳, 张立羽, 余珂. 垃圾渗滤液处理厂活性污泥微生物种群结构和功能分析[J]. 北京大学学报(自然科学版), 2021, 57(5): 927-937 Zhang X, Qiao XJ, Su J, Zhang LY, Yu K. Microbial structure and function of activated sludge in landfill leachate treatment plant[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(5): 927-937(in Chinese)
    [33] 王强. 膜生物反应器同步硝化与反硝化的研究[D]. 太原: 太原理工大学硕士学位论文, 2008 Wang Q. The study on simultaneous nitrification and denitrification in membrane bioreactor (MBR)[D]. Taiyuan: Master's Thesis of Taiyuan University of Technology, 2008(in Chinese)
    [34] 牛晓倩, 周胜虎, 邓禹. 脱氮微生物及脱氮工艺研究进展[J]. 生物工程学报, 2021, 37(10): 3505-3519 Niu XQ, Zhou SH, Deng Y. Advances in denitrification microorganisms and processes[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3505-3519(in Chinese)
    [35] Yu Q, He JY, Zhao QQ, Wang XF, Zhi YN, Li XN, Li XJ, Li LJ, Ge BS. Regulation of nitrogen source for enhanced photobiological H2 production by co-culture of Chlamydomonas reinhardtii and Mesorhizobium sangaii[J]. Algal Research, 2021, 58: 102422
    [36] 王芬, 段洪利, 刘亚飞, 王天弋. 人工湿地处理含盐富营养化水的植物根际与非根际菌群分析[J]. 环境工程学报, 2020, 14(7): 1844-1851 Wang F, Duan HL, Liu YF, Wang TY. Analysis of bacterial community at the rhizosphere and non-rhizosphere of plants in constructed wetland treating brackish eutrophic water[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1844-1851(in Chinese)
    [37] 王婷. 两株溶杆菌属细菌(Lysobacter spp.)的次生代谢产物及活性研究[D]. 昆明: 云南大学硕士学位论文, 2019 Wang T. Studies on the secondary metabolites and activities of two strains from the genus Lysobacter[D]. Kunming: Master's Thesis of Yunnan University, 2019(in Chinese)
    [38] Puthusseri RM, Nair HP, Johny TK, Bhat SG. Insights into the response of mangrove sediment microbiomes to heavy metal pollution: ecological risk assessment and metagenomics perspectives[J]. Journal of Environmental Management, 2021, 298: 113492
    [39] Li BQ, Xu R, Sun XX, Han F, Xiao EZ, Chen L, Qiu L, Sun WM. Microbiome-environment interactions in antimony-contaminated rice paddies and the correlation of core microbiome with arsenic and antimony contamination[J]. Chemosphere, 2021, 263: 128227
    [40] 李明润. 含典型酚类化合物废水微生物降解工艺调控及运行研究[D]. 济南: 济南大学硕士学位论文, 2020 Li MR. Regulation and operation of microbial degradation process for wastewater containing typical phenolic compounds[D]. Ji’nan: Master's Thesis of University of Ji’nan, 2020(in Chinese)
    [41] 肖小双, 安雪姣, 叶晗媛, 王林平, 钟斌, 张庆华. 废水中硫氰酸盐的微生物降解研究进展[J]. 生物技术通报, 2021, 37(2): 224-235 Xiao XS, An XJ, Ye HY, Wang LP, Zhong B, Zhang QH. Research progress on microbial degradation of thiocyanate in wastewater[J]. Biotechnology Bulletin, 2021, 37(2): 224-235(in Chinese)
    [42] 刘国新, 吴海珍, 孙胜利, 胡肖怡, 吴晓英, 陈华勇, 范一文, 胡成生, 韦朝海. 市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J]. 环境科学, 2017, 38(9): 3807-3815 Liu GX, Wu HZ, Sun SL, Hu XY, Wu XY, Chen HY, Fan YW, Hu CS, Wei CH. Aerobic degradation and microbial community succession of coking wastewater with municipal sludge[J]. Environmental Science, 2017, 38(9): 3807-3815(in Chinese)
    [43] 王婧仪. 中慢生根瘤菌MAFF303099共生固氮相关基因筛选及功能验证[D]. 武汉: 华中农业大学硕士学位论文, 2021 Wang JY. Screening and functional verification of genes related to symbiotic nitrogen fixation in Mesorhizobium MAFF303099[D]. Wuhan: Master's Thesis of Huazhong Agricultural University, 2021(in Chinese)
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TAN Zhijie, ZHANG Baoshan, XIE Junting, LIN Yuexia, WU Haizhen, REN Yuan, WEI Chaohai, ZHU Shuang. Microbial structure and functions in the second aerobic bioreactor of O/H/O coking wastewater treatment system[J]. Microbiology China, 2022, 49(11): 4549-4566

Copy
Share
Article Metrics
  • Abstract:348
  • PDF: 1226
  • HTML: 1076
  • Cited by: 0
History
  • Received:March 25,2022
  • Revised:May 29,2022
  • Adopted:May 29,2022
  • Online: November 07,2022
  • Published: November 20,2022
Article QR Code