Application of bacterial biofilm in remediation of polluted farmland soil:a review
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [78]
  • | | | |
  • Comments
    Abstract:

    Farmland soil pollution is becoming serious worldwide. As common soil pollutants, heavy metals, pesticides, and microplastics have posed a threat to farmland ecosystem and food security. Bacterial biofilm (BF), the multi-component aggregate on the surface of bacteria, has proved to have high value in environmental protection in recent years. This paper introduces the composition and functions of BF and summarizes the applications and mechanism of bacteria and BF in remediation of heavy metal- and organic-polluted soil in recent years. Moreover, the potential of BF for remediation of polluted soil is summarized. This study is expected to gain a clearer insight into the key role of BF and guide the exploration of potentials of BF in environmental protection.

    Reference
    [1] Zhao FJ, Ma YB, Zhu YG, Tang Z, McGrath SP. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2):750-759
    [2] 肖冰, 薛培英, 韦亮, 刘成程, 高培培, 樊利敏, 杜佳燕, 刘文菊. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6):2869-2877 Xiao B, Xue PY, Wei L, Liu CC, Gao PP, Fan LM, Du JY, Liu WJ. Characteristics of Cd, As, and Pb in soil and wheat grains and health risk assessment of grain-Cd/as/Pb on the field scale[J]. Environmental Science, 2020, 41(6):2869-2877(in Chinese)
    [3] 薛颖昊, 黄宏坤, 靳拓, 陈思, 徐湘博, 李少华, 宝哲, 居学海, 习斌. 土壤微塑料和农药污染及其对土壤动物毒性效应的研究进展[J]. 农业环境科学学报, 2021, 40(2):242-251 Xue YH, Huang HK, Jin T, Chen S, Xu XB, Li SH, Bao Z, Ju XH, Xi B. Research progress on microplastic and pesticide pollutions and their toxic effects on soil organisms[J]. Journal of Agro-Environment Science, 2021, 40(2):242-251(in Chinese)
    [4] Sadiq FA, Burmølle M, Heyndrickx M, Flint S, Lu WW, Chen W, Zhao JX, Zhang H. Community-wide changes reflecting bacterial interspecific interactions in multi species biofilms[J]. Critical Reviews in Microbiology, 2021, 47(3):338-358
    [5] 温东辉, 张楠, 于聪, 李琪琳. 环境中生物膜的菌群结构与污染物降解特性[J]. 微生物学通报, 2014, 41(7):1394-1401 Wen DH, Zhang N, Yu C, Li QL. Community structure and contaminant degradation function of biofilm in environmental engineering systems[J]. Microbiology China, 2014, 41(7):1394-1401(in Chinese)
    [6] Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research International, 2016, 23(2):962-973
    [7] Schue M, Fekete A, Ortet P, Brutesco C, Heulin T, Schmitt-Kopplin P, Achouak W, Santaella C. Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of Rhizobium alamii to cadmium[J]. PLoS One, 2011, 6(11):e26771
    [8] Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms:current and prospective therapeutic strategies[J]. Nature Reviews Microbiology, 2017, 15(12):740-755
    [9] Sutherland IW. The biofilm matrix-an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5):222-227
    [10] Alpkvist E, Picioreanu C, Van Loosdrecht MCM, Heyden A. Three-dimensional biofilm model with individual cells and continuum EPS matrix[J]. Biotechnology and Bioengineering, 2006, 94(5):961-979
    [11] 刘静聪, 方金玉, 朱军莉. 细菌生物被膜基质的研究进展[J]. 微生物学报, 2022, 62(1):47-56 Liu JC, Fang JY, Zhu JL. A brief review of biofilm matrix in structured microbial communities[J]. Acta Microbiologica Sinica, 2022, 62(1):47-56(in Chinese)
    [12] Fukushi K, Kato S, Antsuki T, Omura T. Isolation of copper-binding proteins from activated sludge culture[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2001, 44(2/3):453-459
    [13] Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms:pathogens, matrix, and polymicrobial interactions in microenvironments[J]. Trends in Microbiology, 2018, 26(3):229-242
    [14] Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, Neut C, Vermeire S, Clemente J, Colombel JF, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn՚s disease[J]. mBio, 2016, 7(5):e01250-e01216
    [15] Dade-Robertson M, Keren-Paz A, Zhang M, Kolodkin-Gal I. Architects of nature:growing buildings with bacterial biofilms[J]. Microbial Biotechnology, 2017, 10(5):1157-1163
    [16] Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome:extracellular components in structured microbial communities[J]. Trends in Microbiology, 2020, 28(8):668-681
    [17] Brown MJ, Lester JN. Comparison of bacterial extracellular polymer extraction methods[J]. Applied and Environmental Microbiology, 1980, 40(2):179-185
    [18] Lion LW, Shuler ML, Hsieh KM, Ghiorse WC, Corpe WA. Trace metal interactions with microbial biofilms in natural and engineered systems[J]. Critical Reviews in Environmental Control, 1988, 17(4):273-306
    [19] Xing YH, Luo XS, Liu S, Wan WJ, Huang QY, Chen WL. Synergistic effect of biofilm growth and cadmium adsorption via compositional changes of extracellular matrix in montmorillonite system[J]. Bioresource Technology, 2020, 315:123742
    [20] Kaçar Y, Arpa Ç, Tan SM, Denizli A, Genç Ö, Arıca MY. Biosorption of Hg(II) and Cd(II) from aqueous solutions:comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium[J]. Process Biochemistry, 2002, 37(6):601-610
    [21] 陈光村. 恶臭假单胞菌CZ1非饱和生物膜耐受和累积重金属的分子机制[D]. 杭州:浙江大学博士学位论文, 2011 Chen GC. Molecular mechanisms of heavy metals tolerance and accumulation in unsaturated Pseudomonas putida CZ1 biofilm[D]. Hangzhou:Doctoral Dissertation of Zhejiang University, 2011(in Chinese)
    [22] 张亚见, 何琳燕, 曾仟, 盛下放. Cd胁迫下枯草芽孢杆菌B12产表面活性素及其对生物被膜形成和Cd去除的影响[J]. 微生物学通报, 2021, 48(6):1883-1894 Zhang YJ, He LY, Zeng Q, Sheng XF. Surfactin production by Bacillus subtilis B12 under Cd stress and its effect on biofilm formation and Cd removal[J]. Microbiology China, 2021, 48(6):1883-1894(in Chinese)
    [23] Raklami A, Oufdou K, Tahiri AI, Mateos-Naranjo E, Navarro-Torre S, Rodríguez-Llorente ID, Meddich A, Redondo-Gómez S, Pajuelo E. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR[J]. Microorganisms, 2019, 7(7):212
    [24] Meliani A, Bensoltane A. Biofilm-mediated heavy metals bioremediation in PGPR Pseudomonas[J]. Journal of Bioremediation & Biodegradation, 2016, 7(5):370
    [25] 葛占标, 殷涂童, 周倩倩, 张静, 盛下放, 何琳燕. 产生物膜芽胞杆菌阻控叶菜吸收镉、铅及其修复菜地土壤的作用[J]. 南京农业大学学报, 2020, 43(1):80-88 Ge ZB, Yin TT, Zhou QQ, Zhang J, Sheng XF, He LY. Reduced cadmium and lead uptake by leafy vegetables and soil remediation in the presence of the biofilm-producing Bacillus strains[J]. Journal of Nanjing Agricultural University, 2020, 43(1):80-88(in Chinese)
    [26] Zhan XH, Ma HL, Zhou LX, Liang JR, Jiang TH, Xu GH. Accumulation of phenanthrene by roots of intact wheat (Triticum acstivnm L.) seedlings:passive or active uptake?[J]. BMC Plant Biology, 2010, 10:52
    [27] Phillips DH. Polycyclic aromatic hydrocarbons in the diet[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1999, 443(1/2):139-147
    [28] Lerch TZ, Chenu C, Dignac MF, Barriuso E, Mariotti A. Biofilm vs. planktonic lifestyle:consequences for pesticide 2,4-D metabolism by Cupriavidus necator JMP134[J]. Frontiers in Microbiology, 2017, 8:904
    [29] Kwak Y, Rhee IK, Shin JH. Application of biofilm-forming bacteria on the enhancement of organophosphorus fungicide degradation[J]. Bioremediation Journal, 2013, 17(3):173-181
    [30] Duc HD. Enhancement of carbofuran degradation by immobilized Bacillus sp. strain DT1[J]. Environmental Engineerring Research, 2022, 27(4):62-69
    [31] Zhang H, Qian YY, Fan DD, Tian YN, Huang X. Biofilm formed by Hansschlegelia zhihuaiae S113 on root surface mitigates the toxicity of bensulfuron- methyl residues to maize[J]. Environmental Pollution, 2022, 292:118366
    [32] Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber[J]. Applied Microbiology and Biotechnology, 2006, 72(2):346-352
    [33] Templeton AS, Trainor TP, Spormann AM, Newville M, Sutton SR, Dohnalkova A, Gorby Y, Brown GE Jr. Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms[J]. Environmental Science & Technology, 2003, 37(2):300-307
    [34] Quiton KG, Doma B Jr, Futalan CM, Wan MW. Removal of chromium(VI) and zinc(II) from aqueous solution using Kaolin-supported bacterial biofilms of Gram-negative E. coli and Gram-positive Staphylococcu s epidermidis[J]. Sustainable Environment Research, 2018, 28(5):206-213
    [35] Xing YH, Tan SX, Liu S, Xu SZ, Wan WJ, Huang QY, Chen WL. Effective immobilization of heavy metals via reactive barrier by rhizosphere bacteria and their biofilms[J]. Environmental Research, 2022, 207:112080
    [36] Xiong ZH, Zheng JW, Sun HR, Hu JW, Sheng XF, He LY. Biofilm-overproducing Bacillus amyloliquefaciens P29Δ sinR decreases Pb availability and uptake in lettuce in Pb-polluted soil[J]. Journal of Environmental Management, 2022, 302:114016
    [37] Henagamage AP, Peries CM, Seneviratne G. Fungal-bacterial biofilm mediated heavy metal rhizo-remediation[J]. World Journal of Microbiology and Biotechnology, 2022, 38(5):1-13
    [38] Lin ZQ, Zhang WP, Pang SM, Huang YH, Mishra S, Bhatt P, Chen SH. Current approaches to and future perspectives on methomyl degradation in contaminated soil/water environments[J]. Molecules:Basel, Switzerland, 2020, 25(3):738
    [39] Dash DM, Osborne WJ. Rapid biodegradation and biofilm-mediated bioremoval of organophosphorus pesticides using an indigenous Kosakonia oryzae strain-VITPSCQ3 in a vertical-flow packed bed biofilm bioreactor[J]. Ecotoxicology and Environmental Safety, 2020, 192:110290
    [40] Verhagen P, De Gelder L, Hoefman S, De Vos P, Boon N. Planktonic versus biofilm catabolic communities:importance of the biofilm for species selection and pesticide degradation[J]. Applied and Environmental Microbiology, 2011, 77(14):4728-4735
    [41] Peixoto J, Silva LP, Krüger RH. Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation[J]. Journal of Hazardous Materials, 2017, 324:634-644
    [42] Kim HR, Lee HM, Yu HC, Jeon E, Lee S, Li JJ, Kim DH. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus)[J]. Environmental Science & Technology, 2020, 54(11):6987-6996
    [43] Arunrattiyakorn P, Ponprateep S, Kaennonsang N, Charapok Y, Punphuet Y, Krajangsang S, Tangteerawatana P, Limtrakul A. Biodegradation of polystyrene by three bacterial strains isolated from the gut of superworms (Zophobas atratus larvae)[J]. Journal of Applied Microbiology, 2022, 132(4):2823-2831
    [44] Fomina M, Gadd GM. Biosorption:current perspectives on concept, definition and application[J]. Bioresource Technology, 2014, 160:3-14
    [45] 王鹏, 江晓路, 江艳华, 管华诗. 细菌胞外多糖构效关系及特性的研究[J]. 食品科学, 2005, 26(11):257-260 Wang P, Jiang XL, Jiang YH, Guan HS. Review on research and development on structure-function relationship and characteristics of bacterial exopolysaccharides[J]. Food Science, 2005, 26(11):257-260(in Chinese)
    [46] Gadd GM. Microbial influence on metal mobility and application for bioremediation[J]. Geoderma, 2004, 122(2/3/4):109-119
    [47] 葛亚男, 张弛, 张聪政, 黄伟. EPS有机质对土壤重金属的吸附效果及机理研究[J]. 现代化工, 2021, 41(9):112-117 Ge YN, Zhang C, Zhang CZ, Huang W. Study on adsorption effect and mechanism of EPS organic matter to soil heavy metals[J]. Modern Chemical Industry, 2021, 41(9):112-117(in Chinese)
    [48] Cloete TE, Oosthuizen DJ. The role of extracellular exopolymers in the removal of phosphorus from activated sludge[J]. Water Research, 2001, 35(15):3595-3598
    [49] Rasulov BA, Yili A, Aisa HA. Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1[J]. Journal of Environmental Protection, 2013, 4(9):989-993
    [50] Wei X, Fang LC, Cai P, Huang QY, Chen H, Liang W, Rong XM. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria[J]. Environmental Pollution, 2011, 159(5):1369-1374
    [51] Bal AS, Dhagat NN. Upflow anaerobic sludge blanket reactor:a review[J]. Indian Journal of Environmental Health, 2001, 43(2):1-82
    [52] Beauregard PB, Chai YR, Vlamakis H, Losick R, Kolter R. Bacillus subtilis biofilm induction by plant polysaccharides[J]. PNAS, 2013, 110(17):E1621-E1630
    [53] 刘娟, 凌婉婷, 盛月慧, 顾玉骏, 高彦征. 根表功能细菌生物膜及其在土壤有机污染控制与修复中的潜在应用价值[J]. 农业环境科学学报, 2013, 32(11):2112-2117 Liu J, Ling WT, Sheng YH, Gu YJ, Gao YZ. Biofilm formation of functional bacteria on root surfaces and its potential applications on organic contaminant control and soil remediation[J]. Journal of Agro-Environment Science, 2013, 32(11):2112-2117(in Chinese)
    [54] Singh R, Paul D, Jain RK. Biofilms:implications in bioremediation[J]. Trends in Microbiology, 2006, 14(9):389-397
    [55] Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation[J]. Science, 2002, 295(5559):1487
    [56] Sarand I, Timonen S, Nurmiaho-Lassila EL, Koivula T, Haahtela K, Romantschuk M, Sen R. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil[J]. FEMS Microbiology Ecology, 1998, 27(2):115-126
    [57] Goris J, Boon N, Lebbe L, Verstraete W, De Vos P. Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1gfp[J]. FEMS Microbiology Ecology, 2003, 46(2):221-230
    [58] Springael D, Peys K, Ryngaert A, Roy SV, Hooyberghs L, Ravatn R, Heyndrickx M, Van Der Meer JR, Vandecasteele C, Mergeay M, et al. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor:indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria[J]. Environmental Microbiology, 2002, 4(2):70-80
    [59] Muhonja CN, Makonde H, Magoma G, Imbuga M. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya[J]. PLoS One, 2018, 13(7):e0198446
    [60] Zhang MJ, Zhao YR, Qin X, Jia WQ, Chai LW, Huang MK, Huang Y. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil[J]. Science of the Total Environment, 2019, 688:470-478
    [61] 鞠志成, 金德才, 邓晔. 土壤中塑料与微生物的相互作用及其生态效应[J]. 中国环境科学, 2021, 41(5):2352-2361 Ju ZC, Jin DC, Deng Y. The interaction between plastics and microorganisms in soil and their ecological effects[J]. China Environmental Science, 2021, 41(5):2352-2361(in Chinese)
    [62] Ya HB, Jiang B, Xing Y, Zhang T, Lv MJ, Wang X. Recent advances on ecological effects of microplastics on soil environment[J]. Science of the Total Environment, 2021, 798:149338
    [63] 王正荣, 生吉萍, 申琳. 细菌胞外多糖的生物合成与基因控制[J]. 生物技术通报, 2010(11):48-55 Wang ZR, Sheng JP, Shen L. Biosynthesis of bacterial exopolysaccharides and gene cluster[J]. Biotechnology Bulletin, 2010(11):48-55(in Chinese)
    [64] Yoshida T, Ayabe Y, Yasunaga M, Usami Y, Habe H, Nojiri H, Omori T. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp. strain 12S[J]. Microbiology:Reading, England, 2003, 149(Pt 2):431-444
    [65] Kumari S, Das S. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation[J]. Environmental Science and Pollution Research International, 2019, 26(28):28763-28774
    [66] Sterritt RM, Brown MJ, Lester JN. Metal removal by adsorption and precipitation in the activated sludge process[J]. Environmental Pollution Series A, Ecological and Biological, 1981, 24(4):313-323
    [67] Valls M, De Lorenzo V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution[J]. FEMS Microbiology Reviews, 2002, 26(4):327-338
    [68] Liu S, Zhang F, Chen J, Sun GX. Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions[J]. Journal of Environmental Sciences, 2011, 23(9):1544-1550
    [69] Villacieros M, Whelan C, Mackova M, Molgaard J, Sánchez-Contreras M, Lloret J, de Cárcer DA, Oruezábal RI, Bolaños L, Macek T, et al. Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression[J]. Applied and Environmental Microbiology, 2005, 71(5):2687-2694
    [70] Chai YR, Kolter R, Losick R. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis[J]. Molecular Microbiology, 2009, 74(4):876-887
    [71] Jasu A, Ray RR. Biofilm mediated strategies to mitigate heavy metal pollution:a critical review in metal bioremediation[J]. Biocatalysis and Agricultural Biotechnology, 2021, 37:102183
    [72] Nguyen PQ, Botyanszki Z, Tay PKR, Joshi NS. Programmable biofilm-based materials from engineered curli nanofibres[J]. Nature Communications, 2014, 5:4945
    [73] Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species[J]. PNAS, 2011, 108(34):14288-14293
    [74] Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure[J]. Current Opinion in Biotechnology, 2003, 14(3):255-261
    [75] Balu S, Bhunia S, Gachhui R, Mukherjee J. Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world՚s largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants[J]. Environmental Pollution, 2020, 266:115270
    [76] Eriksson M, Dalhammar G, Mohn WW. Bacterial growth and biofilm production on pyrene[J]. FEMS Microbiology Ecology, 2002, 40(1):21-27
    [77] 黄艺, 贾薇茜, 李康, 杨云锋. 土壤微塑料与微生物的相互作用关系[J]. 环境科学学报. 2022. DOI:10.13671/j.hjkxxb.2021.0303 Huang Y, Jia WX, Li K, Yang YF. Interaction between soil microplastics and microorganisms[J]. Acta Scientiae Circumstantiae, 2022. DOI:10.13671/j. hjkxxb.2021.0303(in Chinese)
    [78] Freitas EV, Nascimento CW, Souza A, Silva FB. Citric acid-assisted phytoextraction of lead:a field experiment[J]. Chemosphere, 2013, 92(2):213-217
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GUO Junning, DENG Xueting, GAO Rongrong, XIONG Zhihui, HE Linyan. Application of bacterial biofilm in remediation of polluted farmland soil:a review[J]. Microbiology China, 2022, 49(9): 3919-3932

Copy
Share
Article Metrics
  • Abstract:577
  • PDF: 1161
  • HTML: 1643
  • Cited by: 0
History
  • Received:January 25,2022
  • Revised:April 13,2022
  • Online: August 30,2022
  • Published: September 20,2022
Article QR Code