Ethyl acetate extract of Endomelanconiopsis microspora inhibits Sclerotinia ginseng
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • | | | |
  • Comments
    Abstract:

    [Background] Sclerotinia ginseng, one of the major pathogen attacking ginseng, seriously affects the yield of ginseng. [Objective] To explore the mechanism of ethyl acetate extract of the endophytic bacteria Endomelanconiopsis microspora from Taraxacum albiflos Kirschner & Štepanek in inhibiting S. ginseng. [Methods] The inhibitory effect was verified by the test of mycelial growth and spore germination of S. ginseng. The morphological changes of mycelia were observed under a microscope. The cell membrane permeability was detected by changes in conductivity and nucleic acid content, and the membrane lipid peroxidation was measured by changes in malondialdehyde (MDA) content and superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. [Results] The ethyl acetate extract from E. microspora significantly inhibited the mycelial growth of S. ginseng with the minimum inhibitory concentration (MIC) of 3.75 mg/mL and the inhibition rate of 76.22% after 6 days of culture. The ethyl acetate extract significantly inhibited the spore germination of S. ginseng. The 15.00 mg/mL ethyl acetate extract demonstrated the optimal inhibitory effect with the inhibition rate of 90.69%. The ethyl acetate extract influenced mycelial morphology, increased cell membrane permeability of S. ginseng, and resulted in extravasation of mycelial inclusions. Compared with the control group, the treatment with 7.50 mg/mL ethyl acetate extract for 10 h increased the conductivity and nucleic acid content by 30.11% and 62.85%, respectively. At the same time, the ethyl acetate extract significantly increased MDA content and SOD, POD and CAT activities of S. ginseng. The MDA content and SOD, POD and CAT activities in the 7.50mg/mL treatment group first increased, peaked at the time point of 12 h, and then decreased. [Conclusion] The ethyl acetate extract from the endophytic bacteria E. microspora changed the cell membrane permeability of S. ginseng, aggravated the membrane lipid peroxidation, and destroyed the cell membrane integrity, thus leading to the loss of cell inclusions and inhibiting the spore germination and mycelial growth.

    Reference
    [1] 王英权, 郁万芹. 人参栽培管理要点[J]. 特种经济动植物, 2022, 25(1):61-62Wang YQ, Yu WQ. Key points of Panax ginseng cultivation and management[J]. Special Economic Animals and Plants, 2022, 25(1):61-62(in Chinese)
    [2] 王丹, 傅俊范, 尹海波, 周如军, 李自博. 人参核盘菌菌核分泌液致病性及生物学特性研究[J]. 沈阳农业大学学报, 2020, 51(4):439-445Wang D, Fu JF, Yin HB, Zhou RJ, Li ZB. Pathogenicity and biological characteristics of the exudate of Sclerotinia ginseng[J]. Journal of Shenyang Agricultural University, 2020, 51(4):439-445(in Chinese)
    [3] 韩月泠. 人参核盘菌侵染特性及致病机制研究[D]. 沈阳:沈阳农业大学硕士学位论文, 2019Han YL. Infection characteristics and pathogenic mechanism of Sclerotinia ginseng[D]. Shenyang:Masterʼs Thesis of Shenyang Agricultural University, 2019(in Chinese)
    [4] 杨骁, 李长田. 人参内生生防真菌的筛选与鉴定[J]. 东北师大学报(自然科学版), 2013, 45(4):107-113Yang X, Li CT. Screening and identification of endophytic biocontrol fungi of Panax ginseng[J]. Journal of Northeast Normal University:Natural Science Edition, 2013, 45(4):107-113(in Chinese)
    [5] 姜云, 尹望, 陈长卿, 陈光, 高洁. 人参内生菌的分离及拮抗菌株的筛选[J]. 吉林农业大学学报, 2012, 34(5):517-521Jiang Y, Yin W, Chen CQ, Chen G, Gao J. Isolation and screening of antagonistic endophyte from Panax ginseng[J]. Journal of Jilin Agricultural University, 2012, 34(5):517-521(in Chinese)
    [6] 卜宣尹, 杨卫丽. 植物内生菌抑菌机制和抑菌次生代谢产物的研究进展[J]. 现代药物与临床, 2021, 36(10):2200-2206Bu XY, Yang WL. Research progress on antibacterial mechanism of plant endophytes and antibacterial secondary metabolites[J]. Drugs & Clinic, 2021, 36(10):2200-2206(in Chinese)
    [7] 曾茜, 陈旭, 杨雨, 王晓敏, 李玉平. 一株内生菌对香菇和灵芝菌棒病原菌的生防潜力研究[J]. 种子, 2021, 40(5):52-56, 62Zeng Q, Chen X, Yang Y, Wang XM, Li YP. Studies on biocontrol potential of an endophytes against pathogenic bacteria from fungus rods of Lentinula edodes Ganoderma lucidum[J]. Seed, 2021, 40(5):52-56, 62(in Chinese)
    [8] 黄燕, 曾东强, 唐文伟, 杜良伟. 植物内生真菌生物活性成分研究进展[J]. 天然产物研究与开发, 2020, 32(8):1419-1437Huang Y, Zeng DQ, Tang WW, Du LW. Research advances of endophytic fungi bioactive components[J]. Natural Product Research and Development, 2020, 32(8):1419-1437(in Chinese)
    [9] Zhang J, He L, Guo C, Liu ZY, Kaliaperumal K, Zhong BL, Jiang YM. Evaluation of Aspergillus aculeatus GC-09 for the biological control of citrus blue mold caused by Penicillium italicum[J]. Fungal Biology, 2022, 126(3):201-212
    [10] Adeleke BS, Babalola OO. The plant endosphere-hidden treasures:a review of fungal endophytes[J]. Biotechnology and Genetic Engineering Reviews, 2021, 37(2):154-177
    [11] Rojas EI, Herre EA, Mejía LC, Arnold AE, Chaverri P, Samuels GJ. Endomelanconiopsis, a new anamorph genus in the Botryosphaeriaceae[J]. Mycologia, 2008, 100(5):760-775
    [12] Sun ZH, Li HH, Liang FL, Chen YC, Liu HX, Li SN, Tan GH, Zhang WM. Two new secondary metabolites from the endophytic fungus Endomelanconiopsis endophytica[J]. Molecules:Basel, Switzerland, 2016, 21(7):943
    [13] Sun ZH, Liang FL, Chen YC, Liu HX, Li HH, Zhang WM. Two new xyloketals from the endophytic fungus Endomelanconiopsis endophytica derived from medicinal plant Ficus hirta[J]. Journal of Asian Natural Products Research, 2016, 18(11):1036-1041
    [14] He C, Zhang ZQ, Li BQ, Xu Y, Tian SP. Effect of natamycin on Botrytis cinerea and Penicillium expansum —postharvest pathogens of grape berries and jujube fruit[J]. Postharvest Biology and Technology, 2019, 151:134-141
    [15] Chen CY, Qi WW, Peng X, Chen JY, Wan CP. Inhibitory effect of 7-demethoxytylophorine on Penicillium italicum and its possible mechanism[J]. Microorganisms, 2019, 7(2):36
    [16] Wei QH, Cui DZ, Liu XF, Chai YY, Zhao N, Wang JY, Zhao M. In vitro antifungal activity and possible mechanisms of action of chelerythrine[J]. Pesticide Biochemistry and Physiology, 2020, 164:140-148
    [17] 张晨, 吕建华, 董婧, 李长田. 蜜环菌发酵液提取物对人参链格孢霉菌的抑制作用[J]. 菌物研究, 2021, 19(3):177-183Zhang C, Lü JH, Dong J, Li CT. The effect of Armillaria mellea fermentation broth extract in inhibiting Alternaria panax in ginseng[J]. Journal of Fungal Research, 2021, 19(3):177-183(in Chinese)
    [18] Xue YB, Yang MG, Li SH, Li ZJ, Liu HH, Guo QB, Wang CL. The antibiotic activity and mechanisms of active metabolites (Streptomyces alboflavus TD-1) against Ralstonia solanacearum[J]. Biotechnology Letters, 2019, 41(10):1213-1222
    [19] 刘耀华, 马新耀, 程作慧, 赵瑞, 李锐, 李生才. 香茅精油对番茄早疫病菌的抑菌作用及抑菌机制[J]. 应用生态学报, 2017, 28(9):3016-3022Liu YH, Ma XY, Cheng ZH, Zhao R, Li R, Li SC. The antimicrobial activity and mechanism of Cymbopogon citratus essential oil against Alternaria solani[J]. Chinese Journal of Applied Ecology, 2017, 28(9):3016-3022(in Chinese)
    [20] Chen TW, Lu J, Kang BB, Lin MS, Ding LJ, Zhang LY, Chen GY, Chen SJ, Lin HT. Antifungal activity and action mechanism of ginger oleoresin against Pestalotiopsis microspora isolated from Chinese olive fruits[J]. Frontiers in Microbiology, 2018, 9:2583
    [21] Wang RC, Zhai SY, Liang YT, Teng LR, Wang D, Zhang GR. Antibacterial effects of a polypeptide- enriched extract of Rana chensinensis via the regulation of energy metabolism[J]. Molecular Biology Reports, 2020, 47(6):4477-4483
    [22] 赵瑞芳, 张程成, 王增辉, 李尧, 田小卫. 具有农用活性植物内生真菌的研究进展[J]. 安徽农业科学, 2017, 45(33):4-7Zhao RF, Zhang CC, Wang ZH, Li Y, Tian XW. Advances in plant endophyte with agricultural activity[J]. Journal of Anhui Agricultural Sciences, 2017, 45(33):4-7(in Chinese)
    [23] 李可心, 吕建华, 董婧, 张晨, 范冬雨, 李长田. 槐耳发酵液乙酸乙酯提取物对人参菌核病的抑制作用[J/OL]. 吉林农业大学学报, 2021. Doi:10.13327/j. jjlau.2021.1041Li KX, Lü JH, Dong J, Zhang C, Fan DY, Li CT. Inhibitory effect of ethyl acetate extract from Vanderbylia robiniophila fermentation broth on Sclerotinia schinseng[J/OL]. Journal of Jilin Agricultural University, 2021. Doi:10.13327/j.jjlau. 2021.1041(in Chinese)
    [24] Huang F, Kong J, Ju J, Zhang Y, Guo Y, Cheng Y, Qian H, Xie Y, Yao W. Membrane damage mechanism contributes to inhibition of trans-cinnamaldehyde on Penicillium italicum using surface-enhanced Raman spectroscopy (SERS)[J]. Scientific Reports, 2019, 9:490
    [25] Tao NG, OuYang QL, Jia L. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism[J]. Food Control, 2014, 41:116-121
    [26] Shen JW, Ruan Y, Ren W, Ma BJ, Wang XL, Zheng CF. Lycorine:a potential broad-spectrum agent against crop pathogenic fungi[J]. Journal of Microbiology and Biotechnology, 2014, 24(3):354-358
    [27] Xing FG, Hua HJ, Selvaraj JN, Zhao YJ, Zhou L, Liu X, Liu Y. Growth inhibition and morphological alterations of Fusarium verticillioides by cinnamon oil and cinnamaldehyde[J]. Food Control, 2014, 46:343-350
    [28] Chen C, Wang YM, Su C, Zhao XQ, Li M, Meng XW, Jin YY, Yang SH, Ma YS, Wei DZ, et al. Antifungal activity of Streptomyces albidoflavus L131 against the leaf mold pathogen Passalora fulva involves membrane leakage and oxidative damage[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(1):111-119
    [29] 王蕾, 毛玉玲, 许汉亮, 李继虎, 林明江, 胡玉伟, 毛永凯, 管楚雄. 生物表面活性剂鼠李糖脂对甘蔗黑穗病菌的体外抗菌活性[J]. 微生物学通报, 2019, 46(6):1356-1363Wang L, Mao YL, Xu HL, Li JH, Lin MJ, Hu YW, Mao YK, Guan CX. In vitro antifungal activity of biosurfactant rhamnolipids against sugarcane smut caused by Sporisorium scitamineum[J]. Microbiology China, 2019, 46(6):1356-1363(in Chinese)
    [30] Zhang M, Li YC, Bi Y, Wang TL, Dong YP, Yang Q, Zhang TT. 2-phenylethyl isothiocyanate exerts antifungal activity against Alternaria alternata by affecting membrane integrity and mycotoxin production[J]. Toxins, 2020, 12(2):124
    [31] Ma DY, Ji DC, Liu JL, Xu Y, Chen T, Tian SP. Efficacy of methyl thujate in inhibiting Penicillium expansum growth and possible mechanism involved[J]. Postharvest Biology and Technology, 2020, 161:111070
    [32] Hussein KA, Lee YD, Joo JH. Effect of rosemary essential oil and Trichoderma koningiopsis VOCs on pathogenic fungi responsible for ginseng root-rot disease[J]. Journal of Microbiology and Biotechnology, 2020, 30(7):1018-1026
    [33] 李琴琴, 赵英虎, 高莉, 侯倩倩, 王芳, 贾万利, 王英勇. 纳米银对小麦赤霉病菌的抑制[J]. 生物工程学报, 2017, 33(4):620-629Li QQ, Zhao YH, Gao L, Hou QQ, Wang F, Jia WL, Wang YY. Inhibition of Fusarium graminearum by silver nanoparticles[J]. Chinese Journal of Biotechnology, 2017, 33(4):620-629(in Chinese)
    [34] Yin FM, Liu QF, Zhang BJ, Zhang X, He JG, Xie J, Hu Z, Sun RF. Microemulsion preparation of Waltheria indica extracts and preliminary antifungal mechanism exploration[J]. Industrial Crops and Products, 2021, 172:114000
    [35] Gao T, Zhang Y, Shi JR, Mohamed SR, Xu JH, Liu X. The antioxidant guaiacol exerts fungicidal activity against fungal growth and deoxynivalenol production in Fusarium graminearum[J]. Frontiers in Microbiology, 2021, 12:762844
    [36] Halifu S, Deng X, Song XS, Song RQ, Liang X. Inhibitory mechanism of Trichoderma virens ZT05 on Rhizoctonia solani[J]. Plants:Basel, Switzerland, 2020, 9(7):912
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DONG Jing, L&#; Jianhua, LI Kexin, YE Mingyu, ZHANG Chen, LI Changtian. Ethyl acetate extract of Endomelanconiopsis microspora inhibits Sclerotinia ginseng[J]. Microbiology China, 2022, 49(9): 3682-3692

Copy
Share
Article Metrics
  • Abstract:302
  • PDF: 931
  • HTML: 812
  • Cited by: 0
History
  • Received:January 25,2022
  • Revised:March 28,2022
  • Online: August 30,2022
  • Published: September 20,2022
Article QR Code