Oxidative degradation of phenolic compounds by versatile peroxidase-mediated Mn(III) complex system
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    [Background] Phenolic compounds are among the main water pollutants in the environment. The Mn(III) -organic acid chelate mediated by versatile peroxidase (VP) is considered to have great potential in the degradation of phenolic organic pollutants owing to the high redox potential. [Objective] To explore the degradation of phenolic compounds by VP-mediated Mn(III)-organic acid chelate and thereby to provide a new mindset and method for the biodegradation of phenolic compounds. [Methods] The active VP from Pleurotus eryngii (PeVP) was obtained by renaturation of inclusion body in vitro. We characterized the enzymatic properties of PeVP and optimized the reaction conditions of Mn(III) chelate to explore the ability of the complex system to degrade the phenolic compounds. [Results] The optimum conditions for renaturation of PeVP were as follows:The inclusion body was refolded in pH 9.5 solution containing 0.5 mol/L urea, 0.5 mmol/L oxidized glutathione (GSSG), 0.1 mmol/L dithiothreitol (DTT), 0.1 mmol/L ethylenediamine tetraacetic acid (EDTA), 5 mmol/L CaCl2, 10% glycerol, and 5 µmmol/L hematin at 4℃ for 24 h, and then incubated with 5 µmol/L hematin for 12 h. The optimal reaction conditions of PeVP-mediated Mn(III)-organic acid chelate were 75 mmol/L malic acid buffer (pH 4.5), 6 mmol/L Mn2+, and 0.2 mmol/L H2O2. Under the above conditions, the catalytic activity of the chelate system on phenolic compounds 2,2ʹ-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), 2,6-dimethoxyphenol (DMP), guaiacol, and syringaldazine was detected, and it was found that the oxidation activity of Mn(III) chelate system at pH 4.5 was 1.5-7.5 times that of PeVP alone. Moreover, the average degradation rates of phenol, hydroquinone, resorcinol, and p-nitrophenol by Mn(III)-malic acid chelate system were 10.91, 10.69, 6.50, 5.71 mg/(L·h), respectively. Therefore, the Mn(III)-organic acid complex might capture the electrons of phenolic substrate to form phenolic free radicals and lead to the fracture of benzene ring with the decrease of bond energy, thus achieving the oxidative degradation of phenolic compounds. [Conclusion] At pH 4.5, Mn(III)-malic acid chelate system mediated by PeVP shows strong ability to oxidize phenolic substrates, which is a promising solution for the biodegradation of phenolic organic pollutants.

    Reference
    [1] 承海, 李杨, 邢家溧, 张书芬, 郑睿行, 应璐, 曹丽丽, 毛玲燕. 水产品中常见酚类化合物检测方法研究进展[J]. 食品安全质量检测学报, 2020, 11(2):449-454 Cheng H, Li Y, Xing JL, Zhang SF, Zheng RX, Ying L, Cao LL, Mao LY. Research progress on detection methods of common phenolic compounds in aquatic products[J]. Journal of Food Safety & Quality, 2020, 11(2):449-454(in Chinese)
    [2] 赵晗, 艾仕云, 丁葵英, 郝莹, 孙军, 李建军. 酚类污染物的危害及其检测技术研究进展[J]. 检验检疫学刊, 2015, 25(6):66-68 Zhao H, Ai SY, Ding KY, Hao Y, Sun J, Li JJ. Research progress on the detection of harm of phenolic compounds[J]. Journal of Inspection and Quarantine, 2015, 25(6):66-68(in Chinese)
    [3] 汤先伟, 金一和, 张颖花, 池田, 齐藤宪光. 沈阳市自来水中的烷基酚类污染物[J]. 环境与健康杂志, 2005, 22(3):190-191 Tang XW, Jin YH, Zhang YH, Chi T, Qiteng XG. Alkyl pheols in tap water in Shenyang[J]. Journal of Environment and Health, 2005, 22(3):190-191(in Chinese)
    [4] 罗舜钦. 环境水中酚类有机污染物的光降解实验研究[D]. 北京:中国地质大学(北京)硕士学位论文, 2017 Luo SQ. Experimental study on photodegradation of phenolic organic pollutants in water[D]. Beijing:Master's Thesis of China University of Geosciences, 2017(in Chinese)
    [5] 刘太胜, 姜沄林, 蒋宇霞, 邓瀚锵, 孙凯峰. 烷基酚和双酚A的生物毒性及藻类降解研究进展[J]. 广东化工, 2021, 48(15):146-148, 126 Liu TS, Jiang YL, Jiang YX, Deng HQ, Sun KF. Toxicity and algal biodegradation of alkylphenol and bisphenol A[J]. Guangdong Chemical Industry, 2021, 48(15):146-148, 126(in Chinese)
    [6] 孙秋谨, 杨亲正. 酚类污染物的生物降解研究进展[J]. 广州化工, 2013, 41(8):47-49 Sun QJ, Yang QZ. The research progress of biodegradation of phenolic pollutants[J]. Guangzhou Chemical Industry, 2013, 41(8):47-49(in Chinese)
    [7] Xie XH, Liu JS, Jiang ZB, Li HN, Ye M, Pan H, Zhu JW, Song HT. The conversion of the nutrient condition alter the phenol degradation pathway by Rhodococcus biphenylivorans B403:a comparative transcriptomic and proteomic approach[J]. Environmental Science and Pollution Research, 2021, 28(40):56152-56163
    [8] 欧阳科, 谢珊, 赵雅, 王雷超, 方琪惠. 磁性Fe3O4/石墨烯异质结固定漆酶特性及其对水中双酚A的降解研究[J]. 生态环境学报, 2015, 24(1):106-112 Ouyang K, Xie S, Zhao Y, Wang LC, Fang QH. Catalytic capacity and enzymatic characteristics of immobilized laccase on magnetic Fe3O4/graphene hybrids for bisphenol A degradation[J]. Ecology and Environmental Sciences, 2015, 24(1):106-112(in Chinese)
    [9] 杨静, 蒋剑春, 张宁, 徐浩, 解静聪, 赵剑. 微生物降解木质素的研究进展[J]. 生物质化学工程, 2021, 55(3):62-70 Yang J, Jiang JC, Zhang N, Xu H, Xie JC, Zhao J. Research progress on lignin degradation by microorganism[J]. Biomass Chemical Engineering, 2021, 55(3):62-70(in Chinese)
    [10] Hatakka A. Lignin-modifying enzymes from selected white-rot fungi:production and role from in lignin degradation[J]. FEMS Microbiology Reviews, 1994, 13(2/3):125-135
    [11] Jeyakumar D, Chirsteen J, Doble M. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes[J]. Bioresource Technology, 2013, 148:78-85
    [12] 张亚. 可溶性Mn(Ⅲ)与典型有机污染物作用机理研究[D]. 杭州:浙江工业大学硕士学位论文, 2017. Zhang Y. Reaction mechanisms of dissolved Mn(II) and typical organic contaminants[D]. Hangzhou:Master's Thesis of Zhejiang University of Technology, 2017(in Chinese)
    [13] Mohorčič M, Benčina M, Friedrich J, Jerala R. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):851-858
    [14] Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT. Versatile peroxidase oxidation of high redox potential aromatic compounds:site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways[J]. Journal of Molecular Biology, 2005, 354(2):385-402
    [15] Ruiz-Dueñas FJ, Morales M, Pérez-Boada M, Choinowski T, Martínez MJ, Piontek K, Martínez AT. Manganese oxidation site in Pleurotus eryngii versatile peroxidase:a site-directed mutagenesis, kinetic, and crystallographic study[J]. Biochemistry, 2007, 46(1):66-77
    [16] Mester T, Field JA. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese[J]. Journal of Biological Chemistry, 1998, 273(25):15412-15417
    [17] Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2008, 60(2):441-452
    [18] Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T. New and classic families of secreted fungal heme peroxidases[J]. Applied Microbiology and Biotechnology, 2010, 87(3):871-897
    [19] Ruiz-Dueñas FJ, Camarero S, Pérez-Boada M, Martínez MJ, Martínez AT. A new versatile peroxidase from Pleurotus[J]. Biochemical Society Transactions, 2001, 29(2):116-122
    [20] Wang N, Ren K, Jia R, Chen WT, Sun RR. Expression of a fungal manganese peroxidase in Escherichia coli:a comparison between the soluble and refolded enzymes[J]. BMC Biotechnology, 2016, 16(1):87
    [21] 宋倩, 邓勋, 宋瑞清. 糙皮侧耳多功能过氧化物酶基因异源表达及其对玉米秸秆木质素的降解[J]. 吉林农业大学学报, 2022. http://kns.cnki.net/kcms/detail/22.1100.s.20200603.0944.001.html Song Q, Deng Y, Song RQ. Expression of a Pleurotus ostreatus versatile peroxidase gene in Pichia pastoris and its degradation of corn stover lignin[J]. Journal of Jilin Agricultural University, 2022. http://kns.cnki.net/kcms/detail/22.1100.s.20200603.0944.001.html (in Chinese)
    [22] 阮国洪. 水中苯酚、苯二酚和苯三酚的高效液相色谱分析方法的研究[J]. 环境与健康杂志, 2002, 19(1):64-65 Ruan GH. Determination of phenol, benzenediol and benzenetriol in water by high performance liquid chromatography[J]. Journal of Environment and Health, 2002, 19(1):64-65(in Chinese)
    [23] Eggenreich B, Willim M, Wurm DJ, Herwig C, Spadiut O. Production strategies for active heme-containing peroxidases from E. coli inclusion bodies:a review[J]. Biotechnology Reports, 2016, 10:75-83
    [24] Manavalan T, Manavalan A, Heese K. Characterization of lignocellulolytic enzymes from white-rot fungi[J]. Current Microbiology, 2015, 70(4):485-498
    [25] 蔡倩倩, 冉新新, 郭南南, 张心青, 田杰伟. 苯酚高效降解复合菌的构建及应用研究[J]. 当代化工, 2021, 50(10):2398-2402 Cai QQ, Ran XX, Guo NN, Zhang XQ, Tian JW. Construction of a high-efficient phenol degradation bacterial consortium and its application[J]. Contemporary Chemical Industry, 2021, 50(10):2398-2402(in Chinese)
    [26] 李旭春, 刘桂芳, 马军, 邵晓玲. 1株壬基酚降解菌的分离鉴定及其降解特性研究[J]. 环境科学, 2008, 29(1):231-236 Li XC, Liu GF, Ma J, Shao XL. Isolation, identification and biodegradation characteristics of a bacterial strain able to degrade nonylphenol[J]. Environmental Science, 2008, 29(1):231-236(in Chinese)
    [27] 马燕燕. 李村河口底泥来源真菌对壬基酚的降解特性研究[D]. 青岛:中国海洋大学硕士学位论文, 2013 Ma YY. The study of nonylphenol biodegradation by estuary sediment derived fungi from Licun river[D]. Qingdao:Master's Thesis of Ocean University of China, 2013(in Chinese)
    [28] 宁甲练, 陈志莉, 汪楚依, 谢文静. 固定化漆酶降解水中酚类污染物的研究进展[J]. 水处理技术, 2019, 45(2):13-17 Ning JL, Chen ZL, Wang CY, Xie WJ. Research progress of immobilized laccases for phenolic contaminants degradation in water[J]. Technology of Water Treatment, 2019, 45(2):13-17(in Chinese)
    [29] 张丽华. 辣根过氧化物酶在酚类废水中的应用[J]. 山西大同大学学报(自然科学版), 2012, 28(3):35-39 Zhang LH. Applications of horseradish peroxidase in the phenolic wastewater[J]. Journal of Shanxi Datong University:Natural Science Edition, 2012, 28(3):35-39(in Chinese)
    [30] Sun B, Guan XH, Fang JY, Tratnyek PG. Activation of manganese oxidants with bisulfite for enhanced oxidation of organic contaminants:the involvement of Mn(III)[J]. Environmental Science & Technology, 2015, 49(20):12414-12421
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

DOU Mingde, YAO Congyu, WU Jing, XIA Wei, CHEN Sheng. Oxidative degradation of phenolic compounds by versatile peroxidase-mediated Mn(III) complex system[J]. Microbiology China, 2022, 49(9): 3631-3643

Copy
Share
Article Metrics
  • Abstract:315
  • PDF: 1216
  • HTML: 836
  • Cited by: 0
History
  • Received:January 13,2022
  • Revised:March 23,2022
  • Online: August 30,2022
  • Published: September 20,2022
Article QR Code