Sampling strategy influences the detection results of the diversity of soil nematode-trapping fungi species
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Background] Soil microbial diversity has become the research frontier and hot spot in soil science, and science-based soil sampling is the prerequisite for accurate research result. [Objective] To explore the influence of sampling strategy on the detection result of soil nematode-trapping fungi (NTF) and to seek for scientific soil sampling method.[Methods] Soils were collected from different number of sampling sites (3, 5, 9 and 13) which were indifferent arrangements (straight line, V-shaped, W-shaped, triangle-like, and plum blossom-like) in 3 habitats and they were either mixed or unmixed for detection. NTF were purified by single spore isolation. The species were identified based on morphological observation and molecular techniques, and the difference in species diversity and species number of NTF among soils collected with different methods was analyzed. [Results] In the case of single-site sampling, separate purification, and integrated analysis, the α diversity and the number of detected strains rose with the increase in the integrated sampling sites. The difference in the integrated data of 5 and 9 sites was small and the detection results were relatively stable. In the instance of mixing of soil from different sites and then purification, the mixing of soil from more than 5 sites was not conducive to the detection of NTF. [Conclusion] Soil sampling strategy affects pure culture results of NTF. In the case of single-site sampling, separate purification, and integrated data analysis, the 5-site or 9-site sampling is optimal. As for the strategy of soil mixing first and then purification, the 5-site sampling is relatively scientific and feasible.

    Reference
    [1] 王永强. 广州山地森林土壤微生物多样性对不同干扰梯度的响应[D]. 广州:华南农业大学硕士学位论文, 2017 Wang YQ. Responses of soil microbial diversity to different disturbance gradients in mountain forests in Guangzhou[D]. Guangzhou:Master's Thesis of South China Agricultural University, 2017(in Chinese)
    [2] 李为, 余龙江, 周蓬蓬, 杨娟, 章程, 袁道先. 西南岩溶区土壤微生物生态作用的初步研究:以桂林丫吉村岩溶试验场为例[J]. 水土保持学报, 2004, 18(3):112-114, 132 Li W, Yu LJ, Zhou PP, Yang J, Zhang C, Yuan DX. Preliminary study on soil microbial ecological effect in karst areas of southwest China:a case of the Yaji karst experimental site[J]. Journal of Soil Water Conservation, 2004, 18(3):112-114, 132(in Chinese)
    [3] 黄雪菊. 典型干旱河谷土壤质量空间异质性研究[D]. 成都:四川大学硕士学位论文, 2005 Huang XJ. Spatial variability of soil quality in the dry valley along a river's length of the Hengduan mountains[D]. Chengdu:Master's Thesis of Sichuan University, 2005(in Chinese)
    [4] Wang S, Wang XB, Han XG, Deng Y. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils[J]. Global Ecology and Biogeography, 2018, 27(5):570-580
    [5] 赵志祥, 罗坤, 陈国华, 杨宇红, 茆振川, 刘二明, 谢丙炎. 结合宏基因组末端随机测序和16S rDNA技术分析温室黄瓜根围土壤细菌多样性[J]. 生态学报, 2010, 30(14):3849-3857 Zhao ZX, Luo K, Chen GH, Yang YH, Mao ZC, Liu EM, Xie BY. Analysis of bacterial diversity in rhizosphere of cucumber in greenhouse by the methods of metagenomic end-random sequencing and 16S rDNA technology[J]. Acta Ecologica Sinica, 2010, 30(14):3849-3857(in Chinese)
    [6] 王奇赞, 徐秋芳, 姜培坤, 秦华. 天目山毛竹入侵阔叶林后土壤细菌群落16S rDNA V3区片段PCR的DGGE分析[J]. 土壤学报, 2009, 46(4):662-669 Wang QZ, Xu QF, Jiang PK, Qin H. Dgge analysis of PCR of 16S rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by phyllostachy pubescens in Tianmu mountain nature reserve[J]. Acta Pedologica Sinica, 2009, 46(4):662-669(in Chinese)
    [7] Wang JM, Zhang TH, Li LP, Li JW, Feng YM, Lu Q. The patterns and drivers of bacterial and fungal β-diversity in a typical dryland ecosystem of northwest China[J]. Frontiers in Microbiology, 2017, 8:2126
    [8] 孙万龙, 陈苏铭, 刘雪华, 王科朴, 杨云锋. 不同土壤采样设计下土壤表层微生物α多样性的差异分析[J]. 微生物学通报, 2020, 47(6):1699-1708 Sun WL, Chen SM, Liu XH, Wang KP, Yang YF. Effect of soil sampling designs on soil microbial alpha diversity[J]. Microbiology China, 2020, 47(6):1699-1708(in Chinese)
    [9] Li SZ, Deng Y, Du XF, Feng K, Wu YN, He Q, Wang ZJ, Liu YY, Wang DR, Peng X, et al. Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats[J]. Science of The Total Environment, 2021, 767:144966
    [10] Dickie IA, Boyer S, Buckley HL, Duncan RP, Gardner PP, Hogg ID, Holdaway RJ, Lear G, Makiola A, Morales SE, et al. Towards robust and repeatable sampling methods in eDNA-based studies[J]. Molecular Ecology Resources, 2018, 18(5):940-952
    [11] Fortunati GU, Banfi C, Pasturenzi M. Soil sampling[J]. Fresenius՚ Journal of Analytical Chemistry, 1994, 348(1):86-100
    [12] 林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5):892-900 Lin XG, Hu JL. Scientific connotation and ecological service function of soil microbial diversity[J]. Acta Pedologica Sinica, 2008, 45(5):892-900(in Chinese)
    [13] 莫明和, 黄英, 徐进, 张克勤. 捕食线虫真菌捕食器相关基因标记Ⅰ:REMI转化捕食线虫真菌及转化子特征分析[J]. 菌物学报, 2004, 23(3):366-374 Mo MH, Huang Y, Xu J, Zhang KQ. Tagging the genes involved in trapping-device in nematode-trapping fungi I:transformation of the nematode-trapping fungi and characteristic analysis of the transformants[J]. Mycosystema, 2004, 23(3):366-374(in Chinese)
    [14] Li JY, Qian WY, Qiao M, Bai YL, Yu ZF. A new Drechslerella species from Hainan, China[J]. Mycotaxon, 2013, 125(1):183-188
    [15] Zhang KQ, Hyde KD. Nematode-Trapping Fungi[M]. Dordrecht, Netherlands:Berlin:Springer, 2014
    [16] Liu SR, Su HY, Su XJ, Zhang F, Liao GH, Yang XY. Arthrobotrys xiangyunensis, a novel nematode-trapping taxon from a hot-spring in Yunnan province, China[J]. Phytotaxa, 2014, 174(2):89-96
    [17] Zhang F, Zhou XJ, Monkai J, Li FT, Liu SR, Yang XY, Wen X, Hyde KD. Two new species of nematode-trapping fungi (Dactylellina, Orbiliaceae) from burned forest in Yunnan, China[J]. Phytotaxa, 2020, 452(1):65-74
    [18] Zhang Y, Qiao M, Baral HO, Xu JP, Zhang KQ, Yu ZF. Morphological and molecular characterization of Orbilia pseudopolybrocha and O. tonghaiensis, two new species of Orbiliaceae from China[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4):2664-2676
    [19] Quijada L, Baral HO, Beltrán-Tejera E, Pfister DH. Orbilia jesu-laurae (Ascomycota, Orbiliomycetes), a new species of neotropical nematode-trapping fungus from Puerto Rico, supported by morphology and molecular phylogenetics[J]. Willdenowia, 2020, 50(2):241-251
    [20] 杨晓燕, 刘立盘, 苏锡钧, 叶远邦, 黄爱英, 苏鸿雁. 洱海捕食线虫真菌生物多样性研究[J]. 安徽农业科学, 2011, 39(23):14183-14184, 14207 Yang XY, Liu LP, Su XJ, Ye YB, Huang AY, Su HY. Study on the biological diversity of nematode-trapping fungi in Erhai Lake[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23):14183-14184, 14207(in Chinese)
    [21] 周新娟, 邓巍, 滕曼, 刘硕然, 肖文, 杨晓燕. 火烧对苍山捕食线虫真菌群落结构的影响[J]. 大理大学学报, 2018, 3(12):82-86 Zhou XJ, Deng W, Teng M, Liu SR, Xiao W, Yang XY. Effects of fire on the structure of the nematode-trapping fungi community in Cangshan Mountain[J]. Journal of Dali University, 2018, 3(12):82-86(in Chinese)
    [22] 邓巍, 王家亮, 刘李蕾, 房以好, 刘硕然, 杨晓燕, 肖文. 坡向尺度差异对大理苍山捕食线虫真菌分布格局的影响[J]. 生态学报, 2019, 39(17):6452-6459 Deng W, Wang JL, Liu LL, Fang YH, Liu SR, Yang XY, Xiao W. Slope's scale effect on the distribution patterns of nematode trapping fungi from Cangshan Mountain, Dali[J]. Acta Ecologica Sinica, 2019, 39(17):6452-6459(in Chinese)
    [23] 李天飞, 张克勤, 刘杏忠. 食线虫菌物分类学[M]. 北京:中国科学技术出版社, 2000 Li TF, Zhang KQ, Liu XZ. Taxonomy of Nematophagous Fungi[M]. Beijing:China Science and Technology Press, 2000(in Chinese)
    [24] 刘雪峰, 张克勤. 捕食线虫菌物玻片标本制作方法[J].微生物学通报, 2004, 31(1):92-95 Liu XF, Zhang KQ. Slide making methods for predacious nematode fungi[J]. Microbiology China, 2004, 31(1):92-95(in Chinese)
    [25] 张克勤, 莫明和. 中国真菌志. 第三十三卷, 节丛孢及相关属[M]. 北京:科学出版社, 2006 Zhang KQ, Mo MH. Flora Fungorum Sinicorum (Vol. 33):Arthrobotrys Et Gengra Cetera Cognata[M]. Beijing:Science Press, 2006(in Chinese)
    [26] White TJ, Bruns T, Lee S, Taylor J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics[A]//PCR Protocols[M]. Amsterdam:Elsevier, 1990:315-322
    [27] 萨姆布鲁克J, 拉塞尔DW. 分子克隆实验指南[M]. 黄培堂, 译. 3版. 北京:科学出版社, 2002 Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual[M]. Huang PT, trans. 3rd ed. Beijing:Science Press, 2002(in Chinese)
    [28] Burland TG. DNASTAR's lasergene sequence analysis software[J]. Methods in Molecular Biology:Clifton, N J, 2000, 132:71-91
    [29] Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST:a better web interface[J]. Nucleic Acids Research, 2008, 36(Web Server):W5-W9
    [30] Deng W, Wang JL, Scott MB, Fang YH, Liu SR, Yang XY, Xiao W. Sampling methods affect nematode- trapping fungi biodiversity patterns across an elevational gradient[J]. BMC Microbiology, 2020, 20:15
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHOU Faping, YANG Yaoquan, ZHANG Fa, LI Na, YANG Xiaoyan. Sampling strategy influences the detection results of the diversity of soil nematode-trapping fungi species[J]. Microbiology China, 2022, 49(9): 3591-3603

Copy
Share
Article Metrics
  • Abstract:441
  • PDF: 968
  • HTML: 898
  • Cited by: 0
History
  • Received:November 03,2021
  • Revised:March 20,2022
  • Online: August 30,2022
  • Published: September 20,2022
Article QR Code