Engineering of Saccharomyces cerevisiae for improved tolerance to linalool
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [40]
  • | |
  • Cited by
  • | |
  • Comments
    Abstract:

    [Background] Having special fragrance and various biological properties, linalool has become an important feedstock for food, pharmaceutical and cosmetics industries. With the development of synthetic biology, metabolic engineering of microorganisms has become an influential alternative for biosynthesis of linalool. However, the strong toxicity of linalool to host cells is a key bottleneck for microbial production of linalool and other monoterpenes. [Objective] This paper aimed to develop effective strategies for improving the tolerance of microbial host cells to linalool. [Methods] In this study, the ATP-binding cassette (ABC) transporters, reactive oxygen species (ROS)-related enzymes and transcription factors were overexpressed in Saccharomyces cerevisiae BY4741 to identify their roles in the tolerance of S. cerevisiae to linalool. In addition, adaptive laboratory evolution was adopted to obtain the S. cerevisiae strains with increased fitness towards linalool. [Results] Individual overexpression of ABC transporters (Yor1, Snq2, Pdr5, Pdr15 and Pdr18), ROS-related enzymes (Gre2, Ctt1, Yhb1, Gpx2, Trr1, Trx2 and Gsh2) and transcription factors (Ino2, Yap1, Yap5 and Stb5) in S. cerevisiae BY4741 failed to improve the tolerance of S. cerevisiae. Furthermore, S. cerevisiae with improved tolerance (lethal concentration of linalool was increased from 430 mg/L to 645 mg/L) were obtained via adaptive evolution and the SNV/InDel genes were analyzed by whole-genome resequencing. Mutations were found in YBR074W, YBR172C, YHR007C and YMR275C, which enhanced the tolerance to linalool. [Conclusion] The tolerance of S. cerevisiae to linalool was improved by evolutionary engineering, which laid a foundation for analyzing the mechanism of S. cerevisiae to tolerate monoterpenes and provided an excellent chassis cell for heterologous synthesis of monoterpenes.

    Reference
    [1] Karuppiah V, Ranaghan KE, Leferink NGH, Johannissen LO, Shanmugam M, Ní Cheallaigh A, Bennett NJ, Kearsey LJ, Takano E, Gardiner JM, et al. Structural basis of catalysis in the bacterial monoterpene synthases linalool synthase and 1,8-cineole synthase[J]. ACS Catalysis, 2017, 7(9): 6268-6282
    [2] Aprotosoaie AC, Hăncianu M, Costache II, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties[J]. Flavour and Fragrance Journal, 2014, 29(4): 193-219
    [3] Lapczynski A, Letizia CS, Api AM. Addendum to fragrance material review on linalool[J]. Food and Chemical Toxicology, 2008, 46(11): S190-S192
    [4] Marienhagen J, Bott M. Metabolic engineering of microorganisms for the synthesis of plant natural products[J]. Journal of Biotechnology, 2013, 163(2): 166-178
    [5] Deng Y, Sun MX, Xu S, Zhou JW. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Journal of Applied Microbiology, 2016, 121(1): 187-195
    [6] Luo YZ, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao HM, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts[J]. Chemical Society Reviews, 2015, 44(15): 5265-5290
    [7] Zebec Z, Wilkes J, Jervis AJ, Scrutton NS, Takano E, Breitling R. Towards synthesis of monoterpenes and derivatives using synthetic biology[J]. Current Opinion in Chemical Biology, 2016, 34: 37-43
    [8] 孙明雪, 刘继栋, 堵国成, 周景文, 陈坚. 调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成[J]. 生物工程学报, 2013, 29(6): 751-759 Sun MX, Liu JD, Du GC, Zhou JW, Chen J. Regulation of isoprenoid pathway for enhanced production of linalool in Saccharomyces cerevisiae[J]. Chinese Journal of Biotechnology, 2013, 29(6): 751-759(in Chinese)
    [9] 伏贝贝, 赵建志, 李琛, 刘新利, 鲍晓明, 侯进. 酿酒酵母单萜合成的研究进展[J]. 生物技术通报, 2018, 34(4): 60-69 Fu BB, Zhao JZ, Li C, Liu XL, Bao XM, Hou J. Research progresses on monoterpene synthesis in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2018, 34(4): 60-69(in Chinese)
    [10] Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S. Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnology Letters, 2016, 38(3): 503-508
    [11] Cao X, Wei LJ, Lin JY, Hua Q. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2017, 245: 1641-1644
    [12] Peng BY, Nielsen LK, Kampranis SC, Vickers CE. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 47: 83-93
    [13] Zhou PP, Du Y, Xu NN, Yue CL, Ye LD. Improved linalool production in Saccharomyces cerevisiae by combining directed evolution of linalool synthase and overexpression of the complete mevalonate pathway[J]. Biochemical Engineering Journal, 2020, 161: 107655
    [14] Zhou PP, Du Y, Fang X, Xu NN, Yue CL, Ye LD. Combinatorial modulation of linalool synthase and farnesyl diphosphate synthase for linalool overproduction in Saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2021, 69(3): 1003-1010
    [15] Liu J, Zhu Y, Du G, Zhou J, Chen J. Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress[J]. Journal of Applied Microbiology, 2013, 114(2): 482-491
    [16] Brennan TCR, Krömer JO, Nielsen LK. Physiological and transcriptional responses of Saccharomyces cerevisiae to D-limonene show changes to the cell wall but not to the plasma membrane[J]. Applied and Environmental Microbiology, 2013, 79(12): 3590-3600
    [17] Bakkali F, Averbeck S, Averbeck D, Zhiri A, Idaomar M. Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2005, 585(1/2): 1-13
    [18] Liu JD, Zhu YB, Du GC, Zhou JW, Chen J. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress[J]. Applied Microbiology and Biotechnology, 2013, 97(14): 6467-6475
    [19] Uribe S, Ramirez J, Peña A. Effects of beta-pinene on yeast membrane functions[J]. Journal of Bacteriology, 1985, 161(3): 1195-1200
    [20] Zhang L, Xiao WH, Wang Y, Yao MD, Jiang GZ, Zeng BX, Zhang RS, Yuan YJ. Chassis and key enzymes engineering for monoterpenes production[J]. Biotechnology Advances, 2017, 35(8): 1022-1031
    [21] Ling H, Chen BB, Kang A, Lee JM, Chang MW. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance[J]. Biotechnology for Biofuels, 2013, 6(1): 95
    [22] Li J, Zhu K, Miao L, Rong LX, Zhao Y, Li SL, Ma LJ, Li JX, Zhang CY, Xiao DG, et al. Simultaneous improvement of limonene production and tolerance in Yarrowia lipolytica through tolerance engineering and evolutionary engineering[J]. ACS Synthetic Biology, 2021, 10(4): 884-896
    [23] Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees[J]. New Phytologist, 2013, 197(3): 886-898
    [24] Brennan TCR, Williams TC, Schulz BL, Palfreyman RW, Krömer JO, Nielsen LK. Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2015, 81(10): 3316-3325
    [25] 肖琳, 吴安宁, 许国超, 韩瑞枝, 倪晔. 恶臭假单胞菌的正丁醇耐受性驯化及比较基因组学分析[J]. 食品与生物技术学报, 2020, 39(10): 65-72 Xiao L, Wu AN, Xu GC, Han RZ, Ni Y. Adapting n-butanol tolerance of Pseudomonas putida and comparative genomics analysis[J]. Journal of Food Science and Biotechnology, 2020, 39(10): 65-72(in Chinese)
    [26] Zhou PP, Ye LD, Xie WP, Lv XM, Yu HW. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt[J]. Applied Microbiology and Biotechnology, 2015, 99(20): 8419-8428
    [27] Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method[J]. Nature Protocols, 2007, 2(1): 31-34
    [28] Zhou PP, Fang X, Xu NN, Yao Z, Xie WP, Ye LD. Development of a highly efficient copper-inducible GAL regulation system (CuIGR) in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2021, 10(12): 3435-3444
    [29] Parveen M, Hasan MK, Takahashi J, Murata Y, Kitagawa E, Kodama O, Iwahashi H. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis[J]. Journal of Antimicrobial Chemotherapy, 2004, 54(1): 46-55
    [30] Teixeira MC, Godinho CP, Cabrito TR, Mira NP, Sá-Correia I. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation[J]. Microbial Cell Factories, 2012, 11: 98
    [31] Hu FF, Liu JD, Du GC, Hua ZZ, Zhou JW, Chen J. Key cytomembrane ABC transporters of Saccharomyces cerevisiae fail to improve the tolerance to D-limonene[J]. Biotechnology Letters, 2012, 34(8): 1505-1509
    [32] Hecht KA, Wytiaz VA, Ast T, Schuldiner M, Brodsky JL. Characterization of an M28 metalloprotease family member residing in the yeast vacuole[J]. FEMS Yeast Research, 2013, 13(5): 471-484
    [33] Higashio H, Sato K, Nakano A. Smy2p participates in COPII vesicle formation through the interaction with Sec23p/Sec24p subcomplex[J]. Traffic, 2008, 9(1): 79-93
    [34] Turi TG, Loper JC. Multiple regulatory elements control expression of the gene encoding the Saccharomyces cerevisiae cytochrome P450, lanosterol 14 alpha-demethylase (ERG11)[J]. Journal of Biological Chemistry, 1992, 267(3): 2046-2056
    [35] Yashiroda H, Oguchi T, Yasuda Y, Toh-E A, Kikuchi Y. Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1996, 16(7): 3255-3263
    [36] Merhi A, André B. Internal amino acids promote Gap1 permease ubiquitylation via TORC1/Npr1/14-3- 3-dependent control of the Bul arrestin-like adaptors[J]. Molecular and Cellular Biology, 2012, 32(22): 4510-4522
    [37] Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology[J]. Metabolic Engineering, 2019, 56: 1-16
    [38] Wang Y, Fan LW, Tuyishime P, Liu J, Zhang K, Gao N, Zhang ZH, Ni XM, Feng JH, Yuan QQ, et al. Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum[J]. Communications Biology, 2020, 3: 217
    [39] Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S, Hallström BM, Petranovic D, Nielsen J. Altered sterol composition renders yeast thermotolerant[J]. Science, 2014, 346(6205): 75-78
    [40] 夏思杨, 江丽红, 蔡谨, 黄磊, 徐志南, 连佳长. 酿酒酵母基因组进化的研究进展[J]. 合成生物学, 2020, 1(5): 556-569 Xia SY, Jiang LH, Cai J, Huang L, Xu ZN, Lian JZ. Advances in genome evolution of Saccharomyces cerevisiae[J]. Synthetic Biology Journal, 2020, 1(5): 556-569(in Chinese)
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Yan, DA Xinyi, ZHANG Yuchen, FANG Xin, ZHOU Pingping. Engineering of Saccharomyces cerevisiae for improved tolerance to linalool[J]. Microbiology China, 2022, 49(8): 3062-3078

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 16,2021
  • Adopted:April 17,2022
  • Online: July 28,2022
  • Published: August 20,2022
Article QR Code